Procedure | Location | Procedure Type | Description |
---|---|---|---|
f_dst_betai_core | fsml_dst | Function | Computes the regularised incomplete beta function. beta_inc and beta_cf algorithms are based on several public domain Fortran and C code, Lentz's algorithm (1976), and modified to use 2008+ intrinsics. |
f_dst_chi2_cdf | fsml_dst | Function | Impure wrapper function for |
f_dst_chi2_cdf_core | fsml_dst | Function | Cumulative distribution function for the chi-squared distribution. |
f_dst_chi2_pdf | fsml_dst | Function | Impure wrapper function for |
f_dst_chi2_pdf_core | fsml_dst | Function | Probability density function for the chi-squared distribution. |
f_dst_chi2_ppf | fsml_dst | Function | Impure wrapper function for |
f_dst_chi2_ppf_core | fsml_dst | Function | Percent point function/quantile functionfor the chi-squared distribution. |
f_dst_exp_cdf | fsml_dst | Function | Impure wrapper function for |
f_dst_exp_cdf_core | fsml_dst | Function | Cumulative distribution function for exponential distribution. |
f_dst_exp_pdf | fsml_dst | Function | Impure wrapper function for |
f_dst_exp_pdf_core | fsml_dst | Function | Probability density function for exponential distribution. |
f_dst_exp_ppf | fsml_dst | Function | Impure wrapper function for |
f_dst_exp_ppf_core | fsml_dst | Function | Percent point function/quantile function for exponential distribution. |
f_dst_f_cdf | fsml_dst | Function | Impure wrapper function for |
f_dst_f_cdf_core | fsml_dst | Function | Cumulative density function for the F distribution. |
f_dst_f_pdf | fsml_dst | Function | Impure wrapper function for |
f_dst_f_pdf_core | fsml_dst | Function | Probability density function for the F distribution. |
f_dst_f_ppf | fsml_dst | Function | Impure wrapper function for |
f_dst_f_ppf_core | fsml_dst | Function | Percent point function / quantile function for the F distribution. |
f_dst_gamma_cdf | fsml_dst | Function | Impure wrapper function for |
f_dst_gamma_cdf_core | fsml_dst | Function | Cumulative distribution function for gamma distribution. |
f_dst_gamma_pdf | fsml_dst | Function | Impure wrapper function for |
f_dst_gamma_pdf_core | fsml_dst | Function | Probability density function for gamma distribution. |
f_dst_gamma_ppf | fsml_dst | Function | Impure wrapper function for |
f_dst_gamma_ppf_core | fsml_dst | Function | Percent point function/quantile function for gamma distribution. |
f_dst_gammai_core | fsml_dst | Function | Incomplete gamma function (lower). Needed by gamma and chi-squared cdf. Uses Fortran 2008+ intrinsics. |
f_dst_gpd_cdf | fsml_dst | Function | Impure wrapper function for |
f_dst_gpd_cdf_core | fsml_dst | Function | Cumulative distribution function for generalised pareto distribution. |
f_dst_gpd_pdf | fsml_dst | Function | Impure wrapper function for |
f_dst_gpd_pdf_core | fsml_dst | Function | Probability density function for generalised pareto distribution. |
f_dst_gpd_ppf | fsml_dst | Function | Impure wrapper function for |
f_dst_gpd_ppf_core | fsml_dst | Function | Percent point function/quantile function for generalised pareto distribution. |
f_dst_norm_cdf | fsml_dst | Function | Impure wrapper function for |
f_dst_norm_cdf_core | fsml_dst | Function | Cumulative distribution function for normal distribution. |
f_dst_norm_pdf | fsml_dst | Function | Impure wrapper function for |
f_dst_norm_pdf_core | fsml_dst | Function | Probability density function for normal distribution. |
f_dst_norm_ppf | fsml_dst | Function | Impure wrapper function for |
f_dst_norm_ppf_core | fsml_dst | Function | Percent point function/quantile function for normal distribution. |
f_dst_t_cdf | fsml_dst | Function | Impure wrapper function for |
f_dst_t_cdf_core | fsml_dst | Function | Cumulative distribution function for student t distribution. |
f_dst_t_pdf | fsml_dst | Function | Impure wrapper function for |
f_dst_t_pdf_core | fsml_dst | Function | Probability density function for student t distribution. |
f_dst_t_ppf | fsml_dst | Function | Impure wrapper function for |
f_dst_t_ppf_core | fsml_dst | Function | Percent point function/quantile function for t distribution. |
f_lin_mahalanobis | fsml_lin | Function | Impure wrapper function for |
f_lin_mahalanobis_core | fsml_lin | Function | Compute Mahalanobis distance between vectors x and y using covariance matrix cov if provided; otherwise estimate covariance from the two-sample dataset formed by x and y. NOTE: check if cov matrix is positive definite. |
f_sts_cov | fsml_sts | Function | Impure wrapper function for |
f_sts_cov_core | fsml_sts | Function | Computes covariance. |
f_sts_mean | fsml_sts | Function | Impure wrapper function for |
f_sts_mean_core | fsml_sts | Function | Computes arithmetic mean. |
f_sts_median | fsml_sts | Function | Impure wrapper function for |
f_sts_median_core | fsml_sts | Function | Computes median using s_utl_rank for tie-aware ranking |
f_sts_pcc | fsml_sts | Function | Impure wrapper function for |
f_sts_pcc_core | fsml_sts | Function | Computes Pearson correlation coefficient. |
f_sts_scc | fsml_sts | Function | Impure wrapper for |
f_sts_scc_core | fsml_sts | Function | Computes Spearman rank correlation coefficient between x and y.
Uses |
f_sts_std | fsml_sts | Function | Impure wrapper function for |
f_sts_std_core | fsml_sts | Function | Computes standard deviation. |
f_sts_trend | fsml_sts | Function | Impure wrapper function for |
f_sts_trend_core | fsml_sts | Function | Computes regression coefficient/trend. |
f_sts_var | fsml_sts | Function | Impure wrapper function for |
f_sts_var_core | fsml_sts | Function | Computes (sample) variance. |
f_utl_c2r | fsml_utl | Function | Converts char to real. |
f_utl_i2c | fsml_utl | Function | Convert integer to char. |
f_utl_r2c | fsml_utl | Function | Convert real to char. |
fsml_anova_1way | fsml | Interface | The one-way ANOVA (Analysis of Variance) tests whether three or more population means are equal. |
fsml_chi2_cdf | fsml | Interface | Cumulative distribution function for the chi-squared distribution. |
fsml_chi2_pdf | fsml | Interface | Probability density function for the chi-squared distribution.
Uses intrinsic exp and gamma function.
where = degrees of freedom ( |
fsml_chi2_ppf | fsml | Interface | Percent point function/quantile function for the chi-squared distribution. Uses the bisection method for numerical inversion of the CDF. |
fsml_cov | fsml | Interface | Computes the population or sample covariance (depending on passed arguments).
where is the size of (or number of observations in) vectors |
fsml_eof | fsml | Interface | Empirical Orthogonal Function (EOF) analysis is a procedure to reduce the dimensionality
of multivariate data by identifying a set of orthogonal vectors (EOFs or eigenvectores)
that represent directions of maximum variance in the dataset.
The term EOF analysis is often used interchangably with the geographically weighted
principal component analysis (PCA). The procedures are mathematically equivalent, but
procedures for EOF analysis offer some additional options that are mostly relevant for
geoscience. The procedure |
fsml_exp_cdf | fsml | Interface | Cumulative distribution function for exponential distribution. |
fsml_exp_pdf | fsml | Interface | Probability density function for exponential distribution. Uses intrinsic exp function. |
fsml_exp_ppf | fsml | Interface | Percent point function/quantile function for exponential distribution.
Procedure uses bisection method. |
fsml_f_cdf | fsml | Interface | Cumulative density function for the F distribution. |
fsml_f_pdf | fsml | Interface | Probability density function for the F distribution. where = numerator degrees of freedom, = denominator degrees of freedom and is the complete beta function. (Uses intrinsic gamma function for beta.) |
fsml_f_ppf | fsml | Interface | Percent point function / quantile function for the F distribution. Uses the bisection method to numerically invert the CDF. |
fsml_gamma_cdf | fsml | Interface | Cumulative distribution function for gamma distribution. |
fsml_gamma_pdf | fsml | Interface | Probability density function for gamma distribution. Uses intrinsic exp function. |
fsml_gamma_ppf | fsml | Interface | Percent point function/quantile function for gamma distribution.
Procedure uses bisection method. |
fsml_gpd_cdf | fsml | Interface | Cumulative distribution function for generalised pareto distribution. |
fsml_gpd_pdf | fsml | Interface | Probability density function for generalised pareto distribution. where is a shape parameter (xi), is the scale parameter (sigma), (mu) is the location (not mean). |
fsml_gpd_ppf | fsml | Interface | Percent point function/quantile function for generalised pareto distribution.
Procedure uses bisection method. |
fsml_hclust | fsml | Interface | The procedure is an implementation of the agglomerative hierarchical clustering method that groups data points into clusters by iteratively merging the most similar clusters. The procedure uses centroid linkage and the Mahalanobis distance as a measure of similarity. |
fsml_hkmeans | fsml | Interface | The procedure implements a hybrid clustering approach combining agglomerative hierarchical
clustering and k-means clustering, both using the Mahalanobis distance as the similarity measure.
The hierarchical step first partitions the data into |
fsml_kmeans | fsml | Interface | The procedure implements the K-means clustering algorithm using the Mahalanobis
distance as the similarity measure. It accepts initial centroids ( |
fsml_kruskalwallis | fsml | Interface | The Kruskal-Wallis H-test is used to determine whether samples originate from the same distribution without assuming normality. It is therefore considered a nonparametric alternative to the one-way ANOVA (Analysis of Variance). |
fsml_lda_2class | fsml | Interface | interface fsml_lda_2class The 2-class multivariate Linear Discriminant Analysis (LDA) is a statistical procedure for classification and the investigation and explanation of differences between two groups (or classes) with regard to their attribute variables. It quantifies the discriminability of the groups and the contribution of each of the attribute variables to this discriminability. |
fsml_mahalanobis | fsml | Interface | Computes the Mahalanobis distance between two input feature vectors |
fsml_mean | fsml | Interface | Computes arithmetic mean.
where is the size of (or number of observations in) vector |
fsml_median | fsml | Interface | Computes median of vector |
fsml_norm_cdf | fsml | Interface | Cumulative distribution function for normal distribution. |
fsml_norm_pdf | fsml | Interface | Probability density function for normal distribution. |
fsml_norm_ppf | fsml | Interface | Percent point function/quantile function for normal distribution. |
fsml_ols | fsml | Interface | The multiple linear Ordinary Least Squares (OLS) regression models the relationship or linear dependence between a dependent (predictand) variable and and one or more independent (predictor) variables. The procedure estimates the linear regression coefficients by minimising the sum of squared residuals. |
fsml_pca | fsml | Interface | Principal Component Analysis (PCA) is a procedure to reduce the dimensionality of multivariate data by identifying a set of orthogonal vectors (eigenvectores) that represent directions of maximum variance in the dataset. |
fsml_pcc | fsml | Interface | Computes Pearson correlation coefficient (PCC).
where is the Pearson correlation coefficient for vectors |
fsml_rank | fsml | Interface | Ranks all samples such that the smallest value obtains rank 1 and the largest rank n. Handles tied ranks and assigns average rank to tied elements within one group of tied elements. |
fsml_ranksum | fsml | Interface | The ranks sum test (Wilcoxon rank-sum test or Mann–Whitney U test) is a non-parametric test to determine if two independent samples and are have the same distribution. It can be regarded as the non-parametric equivalent of the 2-sample t-test. |
fsml_read_csv | fsml | Interface | Read CSV file directly into dataframe. |
fsml_ridge | fsml | Interface | The multiple linear Ridge regression models the relationship or linear dependence between a dependent (predictand) variable and one or more independent (predictor) variables, incorporating a penalty term on the size of the regression coefficients to reduce multicollinearity and overfitting. |
fsml_scc | fsml | Interface | Computes the Spearman rank correlation coefficient (SCC).
The procedure gets the ranks of cectors |
fsml_signedrank_1sample | fsml | Interface | The 1-sample Wilcoxon signed rank test is a non-parametric test that determines if data comes from a symmetric population with centre . It can be regarded as a non-parametric version of the 1-sample t-test. |
fsml_signedrank_paired | fsml | Interface | The Wilcoxon signed rank test is a non-parametric test that determines if two related paired samples come from the same distribution. It can be regarded as a non-parametric version of the paired t-test. |
fsml_std | fsml | Interface | Computes the population or sample standard deviation (depending on passed arguments).
where is the variance of vector |
fsml_t_cdf | fsml | Interface | Cumulative distribution function for student t distribution. |
fsml_t_pdf | fsml | Interface | Probability density function for student t distribution.
Uses intrinsic gamma function (Fortran 2008 and later).
where = degrees of freedom ( |
fsml_t_ppf | fsml | Interface | Percent point function/quantile function for t distribution. |
fsml_trend | fsml | Interface | Computes regression coefficient/trend.
where is the slope of the regression line (linear trend),
is the covariance of |
fsml_ttest_1sample | fsml | Interface | The 1-sample t-test determines if the sample mean has the value specified in the null hypothesis. |
fsml_ttest_2sample | fsml | Interface | The 2-sample t-test determines if two population means and are the same. The procedure can handle 2-sample t-tests for equal variances and Welch's t-tests for unequal variances. |
fsml_ttest_paired | fsml | Interface | The paired sample t-test (or dependent sample t-test) determines if the mean difference between two sample sets are zero. It is mathematically equivalent to the 1-sample t-test conducted on the difference vector with . |
fsml_var | fsml | Interface | Computes the population or sample variance (depending on passed arguments).
where is the size of (or number of observations in) vector |
s_dat_read_csv | fsml_dat | Subroutine | Read CSV file directly into dataframe. |
s_err_print | fsml_err | Subroutine | Prints error message in specific format. |
s_err_warn | fsml_err | Subroutine | Prints warning message in specific format. |
s_lin_eof | fsml_lin | Subroutine | Empirical Orthogonal Function (EOF) analysis |
s_lin_lda_2c | fsml_lin | Subroutine | 2-class multivariate Linear Discriminant Analysis (LDA) |
s_lin_ols | fsml_lin | Subroutine | Multiple Linear Ordinary Least Squares (OLS) Regression with intercept. NOTE: OLS could be wrapper for ridge (with lambda = 0 or presence checks if mande an optional argument). However, it would increase computation slightly and make code less readable. OLS is often used in teaching and therefore, an easily readable standalone is kept. |
s_lin_pca | fsml_lin | Subroutine | Principal Component Analysis (PCA).
It is a special (simplified) case of EOF analysis offered as a separate
procedure for clarity/familiarity. It calls |
s_lin_ridge | fsml_lin | Subroutine | Multiple Linear Ridge Regression (λ >= 0) with intercept. |
s_nlp_hclust | fsml_nlp | Subroutine | Impure wrapper procedure for |
s_nlp_hclust_core | fsml_nlp | Subroutine | Perform agglomerative hierarchical clustering using centroid linkage and the Mahalanobis distance. NOTE: The procedure is exact, but slow for large nd. For most pracitcal purposes, using Lance–Williams algorithm and other distances is advised. TODO: Implement distance switch and L-W algorithm + approx. distance updates. |
s_nlp_hkmeans | fsml_nlp | Subroutine | Impure wrapper procedure for |
s_nlp_hkmeans_core | fsml_nlp | Subroutine | Perform agglomerative hierarchical clustering using centroid linkage and the Mahalanobis distance, then passes cluster centroids and covariance matrix to kmeans cluster procedure for refinement. |
s_nlp_kmeans | fsml_nlp | Subroutine | Impure wrapper procedure for |
s_nlp_kmeans_core | fsml_nlp | Subroutine | K-means clustering using Mahalanobis distance. NOTE: think about only accepting standardised data to avoid redundant computation in successive calls of procedure. This and repeated Cholesky fractionisation are potential performance bottlenecks. |
s_tst_anova_1w | fsml_tst | Subroutine | Impure wrapper procedure for |
s_tst_anova_1w_core | fsml_tst | Subroutine | One-way ANOVA. |
s_tst_kruskalwallis | fsml_tst | Subroutine | Impure wrapper procedure for |
s_tst_kruskalwallis_core | fsml_tst | Subroutine | Kruskal-Wallis H-test for independent samples. No tie correction. |
s_tst_ranksum | fsml_tst | Subroutine | Impure wrapper procedure for |
s_tst_ranksum_core | fsml_tst | Subroutine | The ranks sum test (Wilcoxon rank-sum test or Mann–Whitney U test). |
s_tst_signedrank_1s | fsml_tst | Subroutine | Impure wrapper procedure for |
s_tst_signedrank_1s_core | fsml_tst | Subroutine | The 1-sample Wilcoxon signed rank test. |
s_tst_signedrank_2s | fsml_tst | Subroutine | Impure wrapper procedure for |
s_tst_signedrank_2s_core | fsml_tst | Subroutine | The Wilcoxon signed rank test. |
s_tst_ttest_1s | fsml_tst | Subroutine | Impure wrapper procedure for |
s_tst_ttest_1s_core | fsml_tst | Subroutine | The 1-sample t-test. |
s_tst_ttest_2s | fsml_tst | Subroutine | Impure wrapper procedure for |
s_tst_ttest_2s_core | fsml_tst | Subroutine | The 2-sample t-test. |
s_tst_ttest_paired | fsml_tst | Subroutine | Impure wrapper procedure for |
s_tst_ttest_paired_core | fsml_tst | Subroutine | The paired sample t-test (or dependent sample t-test).
It is a special case of |
s_utl_cholesky_solve | fsml_utl | Function | Solve a * x = b for x using Cholesky factor returned by stdlib's chol(). a : (n,n) symmetric positive-definite b : (n) |
s_utl_rank | fsml_utl | Subroutine | Ranks all samples such that the smallest value obtains rank 1 and the largest rank n. Handles tied ranks and assigns average rank to tied elements within one group of tied elements. |
s_utl_sort | fsml_utl | Subroutine | Sort real array in ascending (mode=1) or descending (mode=2) order. Preserves the input array. Outputs sorted array and index mapping. |