Procedures

ProcedureLocationProcedure TypeDescription
f_dst_betai_core fsml_dst Function

Computes the regularised incomplete beta function. beta_inc and beta_cf algorithms are based on several public domain Fortran and C code, Lentz's algorithm (1976), and modified to use 2008+ intrinsics.

f_dst_chi2_cdf fsml_dst Function

Impure wrapper function for f_dst_chi2_cdf_core. Handles optional arguments and invalid values for arguments.

f_dst_chi2_cdf_core fsml_dst Function

Cumulative distribution function for the chi-squared distribution.

f_dst_chi2_pdf fsml_dst Function

Impure wrapper function for f_dst_chi2_pdf_core. Handles optional arguments and invalid values for arguments.

f_dst_chi2_pdf_core fsml_dst Function

Probability density function for the chi-squared distribution.

f_dst_chi2_ppf fsml_dst Function

Impure wrapper function for f_dst_chi2_ppf_core. Handles optional arguments and invalid values for arguments.

f_dst_chi2_ppf_core fsml_dst Function

Percent point function/quantile functionfor the chi-squared distribution.

f_dst_exp_cdf fsml_dst Function

Impure wrapper function for f_dst_exp_cdf_core. Handles optional arguments and invalid values for arguments.

f_dst_exp_cdf_core fsml_dst Function

Cumulative distribution function for exponential distribution.

f_dst_exp_pdf fsml_dst Function

Impure wrapper function for f_dst_exp_pdf_core. Handles optional arguments and invalid values for arguments.

f_dst_exp_pdf_core fsml_dst Function

Probability density function for exponential distribution.

f_dst_exp_ppf fsml_dst Function

Impure wrapper function for f_dst_exp_ppf_core. Handles optional arguments and invalid values for arguments.

f_dst_exp_ppf_core fsml_dst Function

Percent point function/quantile function for exponential distribution.

f_dst_f_cdf fsml_dst Function

Impure wrapper function for f_dst_f_cdf_core. Handles optional arguments and invalid values for arguments.

f_dst_f_cdf_core fsml_dst Function

Cumulative density function for the F distribution.

f_dst_f_pdf fsml_dst Function

Impure wrapper function for f_dst_f_pdf_core. Handles optional arguments and invalid values for arguments.

f_dst_f_pdf_core fsml_dst Function

Probability density function for the F distribution.

f_dst_f_ppf fsml_dst Function

Impure wrapper function for f_dst_f_ppf_core. Handles optional arguments and invalid values for arguments.

f_dst_f_ppf_core fsml_dst Function

Percent point function / quantile function for the F distribution.

f_dst_gamma_cdf fsml_dst Function

Impure wrapper function for f_dst_gamma_cdf_core. Handles optional arguments and invalid values for arguments.

f_dst_gamma_cdf_core fsml_dst Function

Cumulative distribution function for gamma distribution.

f_dst_gamma_pdf fsml_dst Function

Impure wrapper function for f_dst_gamma_pdf_core. Handles optional arguments and invalid values for arguments.

f_dst_gamma_pdf_core fsml_dst Function

Probability density function for gamma distribution.

f_dst_gamma_ppf fsml_dst Function

Impure wrapper function for f_dst_gamma_ppf_core. Handles optional arguments and invalid values for arguments.

f_dst_gamma_ppf_core fsml_dst Function

Percent point function/quantile function for gamma distribution.

f_dst_gammai_core fsml_dst Function

Incomplete gamma function (lower). Needed by gamma and chi-squared cdf. Uses Fortran 2008+ intrinsics.

f_dst_gpd_cdf fsml_dst Function

Impure wrapper function for f_dst_gpd_cdf_core. Handles optional arguments and invalid values for arguments.

f_dst_gpd_cdf_core fsml_dst Function

Cumulative distribution function for generalised pareto distribution.

f_dst_gpd_pdf fsml_dst Function

Impure wrapper function for f_dst_gpd_pdf_core. Handles optional arguments and invalid values for arguments.

f_dst_gpd_pdf_core fsml_dst Function

Probability density function for generalised pareto distribution.

f_dst_gpd_ppf fsml_dst Function

Impure wrapper function for f_dst_gpd_ppf_core. Handles optional arguments and invalid values for arguments.

f_dst_gpd_ppf_core fsml_dst Function

Percent point function/quantile function for generalised pareto distribution.

f_dst_norm_cdf fsml_dst Function

Impure wrapper function for f_dst_norm_cdf_core. Handles optional arguments and invalid values for arguments.

f_dst_norm_cdf_core fsml_dst Function

Cumulative distribution function for normal distribution.

f_dst_norm_pdf fsml_dst Function

Impure wrapper function for f_dst_norm_pdf_core. Handles optional arguments and invalid values for arguments.

f_dst_norm_pdf_core fsml_dst Function

Probability density function for normal distribution.

f_dst_norm_ppf fsml_dst Function

Impure wrapper function for f_dst_norm_ppf_core. Handles optional arguments and invalid values for arguments.

f_dst_norm_ppf_core fsml_dst Function

Percent point function/quantile function for normal distribution.

f_dst_t_cdf fsml_dst Function

Impure wrapper function for f_dst_t_cdf_core. Handles optional arguments and invalid values for arguments.

f_dst_t_cdf_core fsml_dst Function

Cumulative distribution function for student t distribution.

f_dst_t_pdf fsml_dst Function

Impure wrapper function for f_dst_t_pdf_core. Handles optional arguments and invalid values for arguments.

f_dst_t_pdf_core fsml_dst Function

Probability density function for student t distribution.

f_dst_t_ppf fsml_dst Function

Impure wrapper function for f_dst_t_ppf_core. Handles optional arguments and invalid values for arguments.

f_dst_t_ppf_core fsml_dst Function

Percent point function/quantile function for t distribution.

f_lin_mahalanobis fsml_lin Function

Impure wrapper function for f_lin_mahalanobis_core.

f_lin_mahalanobis_core fsml_lin Function

Compute Mahalanobis distance between vectors x and y using covariance matrix cov if provided; otherwise estimate covariance from the two-sample dataset formed by x and y. NOTE: check if cov matrix is positive definite.

f_sts_cov fsml_sts Function

Impure wrapper function for f_sts_cov_core.

f_sts_cov_core fsml_sts Function

Computes covariance.

f_sts_mean fsml_sts Function

Impure wrapper function for f_sts_mean_core.

f_sts_mean_core fsml_sts Function

Computes arithmetic mean.

f_sts_median fsml_sts Function

Impure wrapper function for f_sts_median_core.

f_sts_median_core fsml_sts Function

Computes median using s_utl_rank for tie-aware ranking

f_sts_pcc fsml_sts Function

Impure wrapper function for f_sts_trend_core.

f_sts_pcc_core fsml_sts Function

Computes Pearson correlation coefficient.

f_sts_scc fsml_sts Function

Impure wrapper for f_sts_scc_core.

f_sts_scc_core fsml_sts Function

Computes Spearman rank correlation coefficient between x and y. Uses f_sts_pcc_core on ranks.

f_sts_std fsml_sts Function

Impure wrapper function for f_sts_std_core.

f_sts_std_core fsml_sts Function

Computes standard deviation.

f_sts_trend fsml_sts Function

Impure wrapper function for f_sts_trend_core.

f_sts_trend_core fsml_sts Function

Computes regression coefficient/trend.

f_sts_var fsml_sts Function

Impure wrapper function for f_sts_var_core.

f_sts_var_core fsml_sts Function

Computes (sample) variance.

f_utl_c2r fsml_utl Function

Converts char to real.

f_utl_i2c fsml_utl Function

Convert integer to char.

f_utl_r2c fsml_utl Function

Convert real to char.

fsml_anova_1way fsml Interface

The one-way ANOVA (Analysis of Variance) tests whether three or more population means are equal.

Read more…
fsml_chi2_cdf fsml Interface

Cumulative distribution function for the chi-squared distribution.

fsml_chi2_pdf fsml Interface

Probability density function for the chi-squared distribution. Uses intrinsic exp and gamma function. where = degrees of freedom (df) and is the gamma function.

fsml_chi2_ppf fsml Interface

Percent point function/quantile function for the chi-squared distribution. Uses the bisection method for numerical inversion of the CDF.

fsml_cov fsml Interface

Computes the population or sample covariance (depending on passed arguments). where is the size of (or number of observations in) vectors x and y, and are individual elements in x and y, (ddof) is a degrees of freedom adjustment (ddof = 0.0 for population variance, ddof = 1.0 for sample variance), and and are the arithmetic means of x and y.

Read more…
fsml_eof fsml Interface

Empirical Orthogonal Function (EOF) analysis is a procedure to reduce the dimensionality of multivariate data by identifying a set of orthogonal vectors (EOFs or eigenvectores) that represent directions of maximum variance in the dataset. The term EOF analysis is often used interchangably with the geographically weighted principal component analysis (PCA). The procedures are mathematically equivalent, but procedures for EOF analysis offer some additional options that are mostly relevant for geoscience. The procedure fsml_pca is a wrapper for fsml_eof that offers a simpler, more familiar interface for non-geoscientists.

Read more…
fsml_exp_cdf fsml Interface

Cumulative distribution function for exponential distribution.

fsml_exp_pdf fsml Interface

Probability density function for exponential distribution. Uses intrinsic exp function.

fsml_exp_ppf fsml Interface

Percent point function/quantile function for exponential distribution. Procedure uses bisection method. p should be between 0.0 and 1.0.

fsml_f_cdf fsml Interface

Cumulative density function for the F distribution.

fsml_f_pdf fsml Interface

Probability density function for the F distribution. where = numerator degrees of freedom, = denominator degrees of freedom and is the complete beta function. (Uses intrinsic gamma function for beta.)

Read more…
fsml_f_ppf fsml Interface

Percent point function / quantile function for the F distribution. Uses the bisection method to numerically invert the CDF.

fsml_gamma_cdf fsml Interface

Cumulative distribution function for gamma distribution.

fsml_gamma_pdf fsml Interface

Probability density function for gamma distribution. Uses intrinsic exp function.

fsml_gamma_ppf fsml Interface

Percent point function/quantile function for gamma distribution. Procedure uses bisection method. p should be between 0.0 and 1.0.

fsml_gpd_cdf fsml Interface

Cumulative distribution function for generalised pareto distribution.

fsml_gpd_pdf fsml Interface

Probability density function for generalised pareto distribution. where is a shape parameter (xi), is the scale parameter (sigma), (mu) is the location (not mean).

fsml_gpd_ppf fsml Interface

Percent point function/quantile function for generalised pareto distribution. Procedure uses bisection method. p must be between 0.0 and 1.0.

fsml_hclust fsml Interface

The procedure is an implementation of the agglomerative hierarchical clustering method that groups data points into clusters by iteratively merging the most similar clusters. The procedure uses centroid linkage and the Mahalanobis distance as a measure of similarity.

Read more…
fsml_hkmeans fsml Interface

The procedure implements a hybrid clustering approach combining agglomerative hierarchical clustering and k-means clustering, both using the Mahalanobis distance as the similarity measure. The hierarchical step first partitions the data into nc clusters by iteratively merging the most similar clusters. The resulting centroids from are then used as initial centroids (cm_in) for the k-means procedure, which refines them iteratively.

Read more…
fsml_kmeans fsml Interface

The procedure implements the K-means clustering algorithm using the Mahalanobis distance as the similarity measure. It accepts initial centroids (cm_in), refines them iteratively, and returns the final centroids (cm).

Read more…
fsml_kruskalwallis fsml Interface

The Kruskal-Wallis H-test is used to determine whether samples originate from the same distribution without assuming normality. It is therefore considered a nonparametric alternative to the one-way ANOVA (Analysis of Variance).

Read more…
fsml_lda_2class fsml Interface

interface fsml_lda_2class The 2-class multivariate Linear Discriminant Analysis (LDA) is a statistical procedure for classification and the investigation and explanation of differences between two groups (or classes) with regard to their attribute variables. It quantifies the discriminability of the groups and the contribution of each of the attribute variables to this discriminability.

Read more…
fsml_mahalanobis fsml Interface

Computes the Mahalanobis distance between two input feature vectors x and y. If a covariance matrix cov is provided, it is used directly in the calculation. Otherwise, the procedure estimates the covariance matrix from the two-sample dataset formed by x and y. A Cholesky-based solver is used to perform the distance calculation.

Read more…
fsml_mean fsml Interface

Computes arithmetic mean. where is the size of (or number of observations in) vector x, are individual elements in x, and is the arithmetic mean of x.

fsml_median fsml Interface

Computes median of vector x. The procedures can handle tied ranks.

fsml_norm_cdf fsml Interface

Cumulative distribution function for normal distribution.

Read more…
fsml_norm_pdf fsml Interface

Probability density function for normal distribution.

Read more…
fsml_norm_ppf fsml Interface

Percent point function/quantile function for normal distribution.

Read more…
fsml_ols fsml Interface

The multiple linear Ordinary Least Squares (OLS) regression models the relationship or linear dependence between a dependent (predictand) variable and and one or more independent (predictor) variables. The procedure estimates the linear regression coefficients by minimising the sum of squared residuals.

Read more…
fsml_pca fsml Interface

Principal Component Analysis (PCA) is a procedure to reduce the dimensionality of multivariate data by identifying a set of orthogonal vectors (eigenvectores) that represent directions of maximum variance in the dataset.

Read more…
fsml_pcc fsml Interface

Computes Pearson correlation coefficient (PCC). where is the Pearson correlation coefficient for vectors x and y, is the covariance of x and y, and and are the standard deviations of x and y.

Read more…
fsml_rank fsml Interface

Ranks all samples such that the smallest value obtains rank 1 and the largest rank n. Handles tied ranks and assigns average rank to tied elements within one group of tied elements.

fsml_ranksum fsml Interface

The ranks sum test (Wilcoxon rank-sum test or Mann–Whitney U test) is a non-parametric test to determine if two independent samples and are have the same distribution. It can be regarded as the non-parametric equivalent of the 2-sample t-test.

Read more…
fsml_read_csv fsml Interface

Read CSV file directly into dataframe.

fsml_ridge fsml Interface

The multiple linear Ridge regression models the relationship or linear dependence between a dependent (predictand) variable and one or more independent (predictor) variables, incorporating a penalty term on the size of the regression coefficients to reduce multicollinearity and overfitting.

Read more…
fsml_scc fsml Interface

Computes the Spearman rank correlation coefficient (SCC). The procedure gets the ranks of cectors x and y, then calculates the Pearson correlation coefficient on these ranks.

Read more…
fsml_signedrank_1sample fsml Interface

The 1-sample Wilcoxon signed rank test is a non-parametric test that determines if data comes from a symmetric population with centre . It can be regarded as a non-parametric version of the 1-sample t-test.

Read more…
fsml_signedrank_paired fsml Interface

The Wilcoxon signed rank test is a non-parametric test that determines if two related paired samples come from the same distribution. It can be regarded as a non-parametric version of the paired t-test.

Read more…
fsml_std fsml Interface

Computes the population or sample standard deviation (depending on passed arguments). where is the variance of vector x. (ddof) can also be passed and serves as a degrees of freedom adjustment when the variance is caulculated. (ddof = 0.0 for population standard deviation, ddof = 1.0 for sample standard deviation)

fsml_t_cdf fsml Interface

Cumulative distribution function for student t distribution.

Read more…
fsml_t_pdf fsml Interface

Probability density function for student t distribution. Uses intrinsic gamma function (Fortran 2008 and later). where = degrees of freedom (df) and is the gamma function.

Read more…
fsml_t_ppf fsml Interface

Percent point function/quantile function for t distribution.

Read more…
fsml_trend fsml Interface

Computes regression coefficient/trend. where is the slope of the regression line (linear trend), is the covariance of x and y, and is the variance of x.

Read more…
fsml_ttest_1sample fsml Interface

The 1-sample t-test determines if the sample mean has the value specified in the null hypothesis.

Read more…
fsml_ttest_2sample fsml Interface

The 2-sample t-test determines if two population means and are the same. The procedure can handle 2-sample t-tests for equal variances and Welch's t-tests for unequal variances.

Read more…
fsml_ttest_paired fsml Interface

The paired sample t-test (or dependent sample t-test) determines if the mean difference between two sample sets are zero. It is mathematically equivalent to the 1-sample t-test conducted on the difference vector with .

Read more…
fsml_var fsml Interface

Computes the population or sample variance (depending on passed arguments). where is the size of (or number of observations in) vector x, are individual elements in x, (ddof) is a degrees of freedom adjustment (ddof = 0.0 for population variance, ddof = 1.0 for sample variance), and is the arithmetic mean of x.

s_dat_read_csv fsml_dat Subroutine

Read CSV file directly into dataframe.

s_err_print fsml_err Subroutine

Prints error message in specific format.

s_err_warn fsml_err Subroutine

Prints warning message in specific format.

s_lin_eof fsml_lin Subroutine

Empirical Orthogonal Function (EOF) analysis

s_lin_lda_2c fsml_lin Subroutine

2-class multivariate Linear Discriminant Analysis (LDA)

Read more…
s_lin_ols fsml_lin Subroutine

Multiple Linear Ordinary Least Squares (OLS) Regression with intercept. NOTE: OLS could be wrapper for ridge (with lambda = 0 or presence checks if mande an optional argument). However, it would increase computation slightly and make code less readable. OLS is often used in teaching and therefore, an easily readable standalone is kept.

Read more…
s_lin_pca fsml_lin Subroutine

Principal Component Analysis (PCA). It is a special (simplified) case of EOF analysis offered as a separate procedure for clarity/familiarity. It calls s_lin_eof with equal weights.

s_lin_ridge fsml_lin Subroutine

Multiple Linear Ridge Regression (λ >= 0) with intercept.

Read more…
s_nlp_hclust fsml_nlp Subroutine

Impure wrapper procedure for s_nlp_hclust_core.

s_nlp_hclust_core fsml_nlp Subroutine

Perform agglomerative hierarchical clustering using centroid linkage and the Mahalanobis distance. NOTE: The procedure is exact, but slow for large nd. For most pracitcal purposes, using Lance–Williams algorithm and other distances is advised. TODO: Implement distance switch and L-W algorithm + approx. distance updates.

s_nlp_hkmeans fsml_nlp Subroutine

Impure wrapper procedure for s_nlp_hkmeans_core.

s_nlp_hkmeans_core fsml_nlp Subroutine

Perform agglomerative hierarchical clustering using centroid linkage and the Mahalanobis distance, then passes cluster centroids and covariance matrix to kmeans cluster procedure for refinement.

s_nlp_kmeans fsml_nlp Subroutine

Impure wrapper procedure for s_nlp_kmeans_core.

s_nlp_kmeans_core fsml_nlp Subroutine

K-means clustering using Mahalanobis distance. NOTE: think about only accepting standardised data to avoid redundant computation in successive calls of procedure. This and repeated Cholesky fractionisation are potential performance bottlenecks.

s_tst_anova_1w fsml_tst Subroutine

Impure wrapper procedure for s_tst_anova_1w_core.

s_tst_anova_1w_core fsml_tst Subroutine

One-way ANOVA.

s_tst_kruskalwallis fsml_tst Subroutine

Impure wrapper procedure for s_tst_kruskalwallis_core.

s_tst_kruskalwallis_core fsml_tst Subroutine

Kruskal-Wallis H-test for independent samples. No tie correction.

s_tst_ranksum fsml_tst Subroutine

Impure wrapper procedure for s_tst_ranksum_core.

s_tst_ranksum_core fsml_tst Subroutine

The ranks sum test (Wilcoxon rank-sum test or Mann–Whitney U test).

s_tst_signedrank_1s fsml_tst Subroutine

Impure wrapper procedure for s_tst_signedrank_1s_core.

s_tst_signedrank_1s_core fsml_tst Subroutine

The 1-sample Wilcoxon signed rank test.

s_tst_signedrank_2s fsml_tst Subroutine

Impure wrapper procedure for s_tst_signedrank_2s_core.

s_tst_signedrank_2s_core fsml_tst Subroutine

The Wilcoxon signed rank test.

s_tst_ttest_1s fsml_tst Subroutine

Impure wrapper procedure for s_tst_ttest_1s_core.

s_tst_ttest_1s_core fsml_tst Subroutine

The 1-sample t-test.

s_tst_ttest_2s fsml_tst Subroutine

Impure wrapper procedure for s_tst_ttest_2s_core.

s_tst_ttest_2s_core fsml_tst Subroutine

The 2-sample t-test.

s_tst_ttest_paired fsml_tst Subroutine

Impure wrapper procedure for s_tst_ttest_paired_core.

s_tst_ttest_paired_core fsml_tst Subroutine

The paired sample t-test (or dependent sample t-test). It is a special case of s_tst_ttest_1s and uses the same pure procedure (s_tst_ttest_1s_core).

s_utl_cholesky_solve fsml_utl Function

Solve a * x = b for x using Cholesky factor returned by stdlib's chol(). a : (n,n) symmetric positive-definite b : (n)

s_utl_rank fsml_utl Subroutine

Ranks all samples such that the smallest value obtains rank 1 and the largest rank n. Handles tied ranks and assigns average rank to tied elements within one group of tied elements.

s_utl_sort fsml_utl Subroutine

Sort real array in ascending (mode=1) or descending (mode=2) order. Preserves the input array. Outputs sorted array and index mapping.

call~~graph~~CallGraph interface~fsml_anova_1way fsml_anova_1way proc~s_tst_anova_1w s_tst_anova_1w interface~fsml_anova_1way->proc~s_tst_anova_1w interface~fsml_chi2_cdf fsml_chi2_cdf proc~f_dst_chi2_cdf f_dst_chi2_cdf interface~fsml_chi2_cdf->proc~f_dst_chi2_cdf interface~fsml_chi2_pdf fsml_chi2_pdf proc~f_dst_chi2_pdf f_dst_chi2_pdf interface~fsml_chi2_pdf->proc~f_dst_chi2_pdf interface~fsml_chi2_ppf fsml_chi2_ppf proc~f_dst_chi2_ppf f_dst_chi2_ppf interface~fsml_chi2_ppf->proc~f_dst_chi2_ppf interface~fsml_cov fsml_cov proc~f_sts_cov f_sts_cov interface~fsml_cov->proc~f_sts_cov interface~fsml_eof fsml_eof proc~s_lin_eof s_lin_eof interface~fsml_eof->proc~s_lin_eof interface~fsml_exp_cdf fsml_exp_cdf proc~f_dst_exp_cdf f_dst_exp_cdf interface~fsml_exp_cdf->proc~f_dst_exp_cdf interface~fsml_exp_pdf fsml_exp_pdf proc~f_dst_exp_pdf f_dst_exp_pdf interface~fsml_exp_pdf->proc~f_dst_exp_pdf interface~fsml_exp_ppf fsml_exp_ppf proc~f_dst_exp_ppf f_dst_exp_ppf interface~fsml_exp_ppf->proc~f_dst_exp_ppf interface~fsml_f_cdf fsml_f_cdf proc~f_dst_f_cdf f_dst_f_cdf interface~fsml_f_cdf->proc~f_dst_f_cdf interface~fsml_f_pdf fsml_f_pdf proc~f_dst_f_pdf f_dst_f_pdf interface~fsml_f_pdf->proc~f_dst_f_pdf interface~fsml_f_ppf fsml_f_ppf proc~f_dst_f_ppf f_dst_f_ppf interface~fsml_f_ppf->proc~f_dst_f_ppf interface~fsml_gamma_cdf fsml_gamma_cdf proc~f_dst_gamma_cdf f_dst_gamma_cdf interface~fsml_gamma_cdf->proc~f_dst_gamma_cdf interface~fsml_gamma_pdf fsml_gamma_pdf proc~f_dst_gamma_pdf f_dst_gamma_pdf interface~fsml_gamma_pdf->proc~f_dst_gamma_pdf interface~fsml_gamma_ppf fsml_gamma_ppf proc~f_dst_gamma_ppf f_dst_gamma_ppf interface~fsml_gamma_ppf->proc~f_dst_gamma_ppf interface~fsml_gpd_cdf fsml_gpd_cdf proc~f_dst_gpd_cdf f_dst_gpd_cdf interface~fsml_gpd_cdf->proc~f_dst_gpd_cdf interface~fsml_gpd_pdf fsml_gpd_pdf proc~f_dst_gpd_pdf f_dst_gpd_pdf interface~fsml_gpd_pdf->proc~f_dst_gpd_pdf interface~fsml_gpd_ppf fsml_gpd_ppf proc~f_dst_gpd_ppf f_dst_gpd_ppf interface~fsml_gpd_ppf->proc~f_dst_gpd_ppf interface~fsml_hclust fsml_hclust proc~s_nlp_hclust s_nlp_hclust interface~fsml_hclust->proc~s_nlp_hclust interface~fsml_hkmeans fsml_hkmeans proc~s_nlp_hkmeans s_nlp_hkmeans interface~fsml_hkmeans->proc~s_nlp_hkmeans interface~fsml_kmeans fsml_kmeans proc~s_nlp_kmeans s_nlp_kmeans interface~fsml_kmeans->proc~s_nlp_kmeans interface~fsml_kruskalwallis fsml_kruskalwallis proc~s_tst_kruskalwallis s_tst_kruskalwallis interface~fsml_kruskalwallis->proc~s_tst_kruskalwallis interface~fsml_lda_2class fsml_lda_2class proc~s_lin_lda_2c s_lin_lda_2c interface~fsml_lda_2class->proc~s_lin_lda_2c interface~fsml_mahalanobis fsml_mahalanobis proc~f_lin_mahalanobis f_lin_mahalanobis interface~fsml_mahalanobis->proc~f_lin_mahalanobis interface~fsml_mean fsml_mean proc~f_sts_mean f_sts_mean interface~fsml_mean->proc~f_sts_mean interface~fsml_median fsml_median proc~f_sts_median f_sts_median interface~fsml_median->proc~f_sts_median interface~fsml_norm_cdf fsml_norm_cdf proc~f_dst_norm_cdf f_dst_norm_cdf interface~fsml_norm_cdf->proc~f_dst_norm_cdf interface~fsml_norm_pdf fsml_norm_pdf proc~f_dst_norm_pdf f_dst_norm_pdf interface~fsml_norm_pdf->proc~f_dst_norm_pdf interface~fsml_norm_ppf fsml_norm_ppf proc~f_dst_norm_ppf f_dst_norm_ppf interface~fsml_norm_ppf->proc~f_dst_norm_ppf interface~fsml_ols fsml_ols proc~s_lin_ols s_lin_ols interface~fsml_ols->proc~s_lin_ols interface~fsml_pca fsml_pca proc~s_lin_pca s_lin_pca interface~fsml_pca->proc~s_lin_pca interface~fsml_pcc fsml_pcc proc~f_sts_pcc f_sts_pcc interface~fsml_pcc->proc~f_sts_pcc interface~fsml_rank fsml_rank proc~s_utl_rank s_utl_rank interface~fsml_rank->proc~s_utl_rank interface~fsml_ranksum fsml_ranksum proc~s_tst_ranksum s_tst_ranksum interface~fsml_ranksum->proc~s_tst_ranksum interface~fsml_read_csv fsml_read_csv proc~s_dat_read_csv s_dat_read_csv interface~fsml_read_csv->proc~s_dat_read_csv interface~fsml_ridge fsml_ridge proc~s_lin_ridge s_lin_ridge interface~fsml_ridge->proc~s_lin_ridge interface~fsml_scc fsml_scc proc~f_sts_scc f_sts_scc interface~fsml_scc->proc~f_sts_scc interface~fsml_signedrank_1sample fsml_signedrank_1sample proc~s_tst_signedrank_1s s_tst_signedrank_1s interface~fsml_signedrank_1sample->proc~s_tst_signedrank_1s interface~fsml_signedrank_paired fsml_signedrank_paired proc~s_tst_signedrank_2s s_tst_signedrank_2s interface~fsml_signedrank_paired->proc~s_tst_signedrank_2s interface~fsml_std fsml_std proc~f_sts_std f_sts_std interface~fsml_std->proc~f_sts_std interface~fsml_t_cdf fsml_t_cdf proc~f_dst_t_cdf f_dst_t_cdf interface~fsml_t_cdf->proc~f_dst_t_cdf interface~fsml_t_pdf fsml_t_pdf proc~f_dst_t_pdf f_dst_t_pdf interface~fsml_t_pdf->proc~f_dst_t_pdf interface~fsml_t_ppf fsml_t_ppf proc~f_dst_t_ppf f_dst_t_ppf interface~fsml_t_ppf->proc~f_dst_t_ppf interface~fsml_trend fsml_trend proc~f_sts_trend f_sts_trend interface~fsml_trend->proc~f_sts_trend interface~fsml_ttest_1sample fsml_ttest_1sample proc~s_tst_ttest_1s s_tst_ttest_1s interface~fsml_ttest_1sample->proc~s_tst_ttest_1s interface~fsml_ttest_2sample fsml_ttest_2sample proc~s_tst_ttest_2s s_tst_ttest_2s interface~fsml_ttest_2sample->proc~s_tst_ttest_2s interface~fsml_ttest_paired fsml_ttest_paired proc~s_tst_ttest_paired s_tst_ttest_paired interface~fsml_ttest_paired->proc~s_tst_ttest_paired interface~fsml_var fsml_var proc~f_sts_var f_sts_var interface~fsml_var->proc~f_sts_var proc~f_dst_betai_core f_dst_betai_core proc~f_dst_chi2_cdf_core f_dst_chi2_cdf_core proc~f_dst_chi2_cdf->proc~f_dst_chi2_cdf_core proc~s_err_print s_err_print proc~f_dst_chi2_cdf->proc~s_err_print proc~f_dst_gammai_core f_dst_gammai_core proc~f_dst_chi2_cdf_core->proc~f_dst_gammai_core proc~f_dst_chi2_pdf_core f_dst_chi2_pdf_core proc~f_dst_chi2_pdf->proc~f_dst_chi2_pdf_core proc~f_dst_chi2_pdf->proc~s_err_print proc~f_dst_chi2_ppf_core f_dst_chi2_ppf_core proc~f_dst_chi2_ppf->proc~f_dst_chi2_ppf_core proc~f_dst_chi2_ppf->proc~s_err_print proc~s_err_warn s_err_warn proc~f_dst_chi2_ppf->proc~s_err_warn proc~f_dst_chi2_ppf_core->proc~f_dst_chi2_cdf_core proc~f_dst_exp_cdf_core f_dst_exp_cdf_core proc~f_dst_exp_cdf->proc~f_dst_exp_cdf_core proc~f_dst_exp_cdf->proc~s_err_print proc~f_dst_exp_pdf_core f_dst_exp_pdf_core proc~f_dst_exp_pdf->proc~f_dst_exp_pdf_core proc~f_dst_exp_pdf->proc~s_err_print proc~f_dst_exp_ppf_core f_dst_exp_ppf_core proc~f_dst_exp_ppf->proc~f_dst_exp_ppf_core proc~f_dst_exp_ppf->proc~s_err_print proc~f_dst_exp_ppf->proc~s_err_warn proc~f_dst_exp_ppf_core->proc~f_dst_exp_cdf_core proc~f_dst_f_cdf_core f_dst_f_cdf_core proc~f_dst_f_cdf->proc~f_dst_f_cdf_core proc~f_dst_f_cdf->proc~s_err_print proc~f_dst_f_cdf_core->proc~f_dst_betai_core proc~f_dst_f_pdf_core f_dst_f_pdf_core proc~f_dst_f_pdf->proc~f_dst_f_pdf_core proc~f_dst_f_pdf->proc~s_err_print proc~f_dst_f_ppf_core f_dst_f_ppf_core proc~f_dst_f_ppf->proc~f_dst_f_ppf_core proc~f_dst_f_ppf->proc~s_err_print proc~f_dst_f_ppf->proc~s_err_warn proc~f_dst_f_ppf_core->proc~f_dst_f_cdf_core proc~f_dst_gamma_cdf_core f_dst_gamma_cdf_core proc~f_dst_gamma_cdf->proc~f_dst_gamma_cdf_core proc~f_dst_gamma_cdf->proc~s_err_print proc~f_dst_gamma_cdf_core->proc~f_dst_gammai_core proc~f_dst_gamma_pdf_core f_dst_gamma_pdf_core proc~f_dst_gamma_pdf->proc~f_dst_gamma_pdf_core proc~f_dst_gamma_pdf->proc~s_err_print proc~f_dst_gamma_ppf_core f_dst_gamma_ppf_core proc~f_dst_gamma_ppf->proc~f_dst_gamma_ppf_core proc~f_dst_gamma_ppf->proc~s_err_print proc~f_dst_gamma_ppf->proc~s_err_warn proc~f_dst_gamma_ppf_core->proc~f_dst_gamma_cdf_core proc~f_dst_gpd_cdf_core f_dst_gpd_cdf_core proc~f_dst_gpd_cdf->proc~f_dst_gpd_cdf_core proc~f_dst_gpd_cdf->proc~s_err_print proc~f_dst_gpd_pdf_core f_dst_gpd_pdf_core proc~f_dst_gpd_pdf->proc~f_dst_gpd_pdf_core proc~f_dst_gpd_pdf->proc~s_err_print proc~f_dst_gpd_ppf_core f_dst_gpd_ppf_core proc~f_dst_gpd_ppf->proc~f_dst_gpd_ppf_core proc~f_dst_gpd_ppf->proc~s_err_print proc~f_dst_norm_cdf_core f_dst_norm_cdf_core proc~f_dst_norm_cdf->proc~f_dst_norm_cdf_core proc~f_dst_norm_cdf->proc~s_err_print proc~f_dst_norm_pdf_core f_dst_norm_pdf_core proc~f_dst_norm_pdf->proc~f_dst_norm_pdf_core proc~f_dst_norm_pdf->proc~s_err_print proc~f_dst_norm_ppf_core f_dst_norm_ppf_core proc~f_dst_norm_ppf->proc~f_dst_norm_ppf_core proc~f_dst_norm_ppf->proc~s_err_print proc~f_dst_norm_ppf->proc~s_err_warn proc~f_dst_norm_ppf_core->proc~f_dst_norm_cdf_core proc~f_dst_t_cdf_core f_dst_t_cdf_core proc~f_dst_t_cdf->proc~f_dst_t_cdf_core proc~f_dst_t_cdf->proc~s_err_print proc~f_dst_t_cdf_core->proc~f_dst_betai_core proc~f_dst_t_pdf_core f_dst_t_pdf_core proc~f_dst_t_pdf->proc~f_dst_t_pdf_core proc~f_dst_t_pdf->proc~s_err_print proc~f_dst_t_ppf_core f_dst_t_ppf_core proc~f_dst_t_ppf->proc~f_dst_t_ppf_core proc~f_dst_t_ppf->proc~s_err_print proc~f_dst_t_ppf->proc~s_err_warn proc~f_dst_t_ppf_core->proc~f_dst_t_cdf_core proc~f_lin_mahalanobis_core f_lin_mahalanobis_core proc~f_lin_mahalanobis->proc~f_lin_mahalanobis_core proc~f_lin_mahalanobis->proc~s_err_print proc~f_sts_cov_core f_sts_cov_core proc~f_lin_mahalanobis_core->proc~f_sts_cov_core proc~s_utl_cholesky_solve s_utl_cholesky_solve proc~f_lin_mahalanobis_core->proc~s_utl_cholesky_solve proc~f_sts_cov->proc~f_sts_cov_core proc~f_sts_cov->proc~s_err_print proc~f_sts_mean_core f_sts_mean_core proc~f_sts_cov_core->proc~f_sts_mean_core proc~f_sts_mean->proc~f_sts_mean_core proc~f_sts_mean->proc~s_err_print proc~f_sts_median_core f_sts_median_core proc~f_sts_median->proc~f_sts_median_core proc~f_sts_median->proc~s_err_print proc~f_sts_median_core->proc~s_utl_rank proc~f_sts_pcc_core f_sts_pcc_core proc~f_sts_pcc->proc~f_sts_pcc_core proc~f_sts_pcc->proc~s_err_print proc~f_sts_pcc_core->proc~f_sts_cov_core proc~f_sts_var_core f_sts_var_core proc~f_sts_pcc_core->proc~f_sts_var_core proc~f_sts_scc_core f_sts_scc_core proc~f_sts_scc->proc~f_sts_scc_core proc~f_sts_scc->proc~s_err_print proc~f_sts_scc_core->proc~f_sts_pcc_core proc~f_sts_scc_core->proc~s_utl_rank proc~f_sts_std->proc~f_sts_var_core proc~f_sts_std->proc~s_err_print proc~f_sts_std_core f_sts_std_core proc~f_sts_std_core->proc~f_sts_var_core proc~f_sts_trend_core f_sts_trend_core proc~f_sts_trend->proc~f_sts_trend_core proc~f_sts_trend->proc~s_err_print proc~f_sts_trend_core->proc~f_sts_cov_core proc~f_sts_trend_core->proc~f_sts_var_core proc~f_sts_var->proc~f_sts_var_core proc~f_sts_var->proc~s_err_print proc~f_sts_var_core->proc~f_sts_mean_core proc~f_utl_c2r f_utl_c2r proc~f_utl_i2c f_utl_i2c proc~f_utl_r2c f_utl_r2c proc~s_dat_read_csv->proc~f_utl_c2r proc~s_err_print->proc~f_utl_r2c proc~s_err_warn->proc~f_utl_r2c proc~s_lin_eof->proc~f_sts_mean_core proc~s_lin_eof->proc~f_sts_std_core proc~s_lin_eof->proc~s_err_print eigh eigh proc~s_lin_eof->eigh proc~s_lin_lda_2c->proc~f_sts_cov_core proc~s_lin_lda_2c->proc~f_sts_mean_core proc~s_lin_lda_2c->proc~f_sts_var_core proc~s_lin_lda_2c->proc~s_err_print proc~s_lin_lda_2c->eigh proc~s_lin_ols->proc~f_sts_mean_core proc~s_lin_ols->proc~s_err_print proc~s_lin_ols->eigh proc~s_lin_pca->proc~s_err_print proc~s_lin_pca->proc~s_lin_eof proc~s_lin_ridge->proc~f_sts_mean_core proc~s_lin_ridge->proc~s_err_print proc~s_lin_ridge->eigh proc~s_nlp_hclust->proc~s_err_print proc~s_nlp_hclust->proc~s_err_warn proc~s_nlp_hclust_core s_nlp_hclust_core proc~s_nlp_hclust->proc~s_nlp_hclust_core proc~s_nlp_hclust_core->proc~f_lin_mahalanobis_core proc~s_nlp_hclust_core->proc~f_sts_cov_core proc~s_nlp_hclust_core->proc~f_sts_mean_core proc~s_nlp_hclust_core->proc~f_sts_var_core proc~s_utl_sort s_utl_sort proc~s_nlp_hclust_core->proc~s_utl_sort proc~s_nlp_hkmeans->proc~s_err_print proc~s_nlp_hkmeans->proc~s_err_warn proc~s_nlp_hkmeans_core s_nlp_hkmeans_core proc~s_nlp_hkmeans->proc~s_nlp_hkmeans_core proc~s_nlp_hkmeans_core->proc~s_nlp_hclust_core proc~s_nlp_kmeans_core s_nlp_kmeans_core proc~s_nlp_hkmeans_core->proc~s_nlp_kmeans_core proc~s_nlp_kmeans->proc~s_err_print proc~s_nlp_kmeans->proc~s_err_warn proc~s_nlp_kmeans->proc~s_nlp_kmeans_core proc~s_nlp_kmeans_core->proc~f_lin_mahalanobis_core proc~s_nlp_kmeans_core->proc~f_sts_cov_core proc~s_nlp_kmeans_core->proc~f_sts_mean_core proc~s_nlp_kmeans_core->proc~f_sts_var_core proc~s_nlp_kmeans_core->proc~s_utl_sort proc~s_tst_anova_1w->proc~s_err_print proc~s_tst_anova_1w_core s_tst_anova_1w_core proc~s_tst_anova_1w->proc~s_tst_anova_1w_core proc~s_tst_anova_1w_core->proc~f_dst_f_cdf_core proc~s_tst_anova_1w_core->proc~f_sts_mean_core proc~s_tst_kruskalwallis->proc~s_err_print proc~s_tst_kruskalwallis_core s_tst_kruskalwallis_core proc~s_tst_kruskalwallis->proc~s_tst_kruskalwallis_core proc~s_tst_kruskalwallis_core->proc~f_dst_chi2_cdf_core proc~s_tst_kruskalwallis_core->proc~s_utl_rank proc~s_tst_ranksum->proc~s_err_print proc~s_tst_ranksum_core s_tst_ranksum_core proc~s_tst_ranksum->proc~s_tst_ranksum_core proc~s_tst_ranksum_core->proc~f_dst_norm_cdf_core proc~s_tst_ranksum_core->proc~s_utl_rank proc~s_tst_signedrank_1s->proc~s_err_print proc~s_tst_signedrank_1s_core s_tst_signedrank_1s_core proc~s_tst_signedrank_1s->proc~s_tst_signedrank_1s_core proc~s_tst_signedrank_1s_core->proc~f_dst_norm_cdf_core proc~s_tst_signedrank_1s_core->proc~s_utl_rank proc~s_tst_signedrank_2s->proc~s_err_print proc~s_tst_signedrank_2s_core s_tst_signedrank_2s_core proc~s_tst_signedrank_2s->proc~s_tst_signedrank_2s_core proc~s_tst_signedrank_2s_core->proc~s_tst_signedrank_1s_core proc~s_tst_ttest_1s->proc~s_err_print proc~s_tst_ttest_1s_core s_tst_ttest_1s_core proc~s_tst_ttest_1s->proc~s_tst_ttest_1s_core proc~s_tst_ttest_1s_core->proc~f_dst_t_cdf_core proc~s_tst_ttest_1s_core->proc~f_sts_mean_core proc~s_tst_ttest_2s->proc~s_err_print proc~s_tst_ttest_2s_core s_tst_ttest_2s_core proc~s_tst_ttest_2s->proc~s_tst_ttest_2s_core proc~s_tst_ttest_2s_core->proc~f_dst_t_cdf_core proc~s_tst_ttest_2s_core->proc~f_sts_mean_core proc~s_tst_ttest_paired->proc~s_err_print proc~s_tst_ttest_paired_core s_tst_ttest_paired_core proc~s_tst_ttest_paired->proc~s_tst_ttest_paired_core proc~s_tst_ttest_paired_core->proc~s_tst_ttest_1s_core chol chol proc~s_utl_cholesky_solve->chol
Help