FSML interface module.
The one-way ANOVA (Analysis of Variance) tests whether three or more population means are equal.
The null hypothesis and alternative hypothesis are defined as: : , and : At least one differs from the others.
The data is passed to the procedure as a rank-2 array x
, where each column is a group of observations.
The procedure partitions then the total variability in the data ( ) into
variability between groups ( ; variability explained by groups ), and
variability within groups ( ; unexplained or residual variability ), so that
The F-statistic (f
) is the ratio of the mean sum of squares between groups
to the mean sum of squares within groups:
where is the number of groups, is the total number of observations,
is the sum of squares between groups, and
is the sum of squares within groups.
The degrees of freedom are between groups (df_b
)
and within groups (df_w
).
The resulting p-value (p
) is computed from the F-distribution:
It is computed with the elemental procedure f_dst_f_cdf_core
.
The ANOVA makes the assumptions that a) the groups are independent, b) the observations within each group are normally distributed, and c) The variances within groups are equal.
Impure wrapper procedure for s_tst_anova_1w_core
.
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
real(kind=wp), | intent(in) | :: | x(:,:) |
2D array, each column is a group |
||
real(kind=wp), | intent(out) | :: | f |
F-statistic |
||
real(kind=wp), | intent(out) | :: | df_b |
degrees of freedom between groups |
||
real(kind=wp), | intent(out) | :: | df_w |
degrees of freedom within groups |
||
real(kind=wp), | intent(out) | :: | p |
p-value from F distribution |
Cumulative distribution function for the chi-squared distribution.
Impure wrapper function for f_dst_chi2_cdf_core
.
Handles optional arguments and invalid values for arguments.
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
real(kind=wp), | intent(in) | :: | x |
sample position |
||
real(kind=wp), | intent(in) | :: | df |
degrees of freedom |
||
real(kind=wp), | intent(in), | optional | :: | loc |
location parameter |
|
real(kind=wp), | intent(in), | optional | :: | scale |
scale parameter |
|
character(len=*), | intent(in), | optional | :: | tail |
tail options |
resulting CDF value
Probability density function for the chi-squared distribution.
Uses intrinsic exp and gamma function.
where = degrees of freedom (df
) and is the gamma function.
Impure wrapper function for f_dst_chi2_pdf_core
.
Handles optional arguments and invalid values for arguments.
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
real(kind=wp), | intent(in) | :: | x |
sample position |
||
real(kind=wp), | intent(in) | :: | df |
degrees of freedom |
||
real(kind=wp), | intent(in), | optional | :: | loc |
location parameter |
|
real(kind=wp), | intent(in), | optional | :: | scale |
scale parameter |
resulting PDF value
Percent point function/quantile function for the chi-squared distribution. Uses the bisection method for numerical inversion of the CDF.
Impure wrapper function for f_dst_chi2_ppf_core
.
Handles optional arguments and invalid values for arguments.
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
real(kind=wp), | intent(in) | :: | p |
probability between 0.0 and 1.0 |
||
real(kind=wp), | intent(in) | :: | df |
degrees of freedom |
||
real(kind=wp), | intent(in), | optional | :: | loc |
location parameter |
|
real(kind=wp), | intent(in), | optional | :: | scale |
scale parameter |
sample position
Computes the population or sample covariance (depending on passed arguments).
where is the size of (or number of observations in) vectors x
and y
,
and are individual elements in x
and y
,
(ddof
) is a degrees of freedom adjustment
(ddof = 0.0
for population variance, ddof = 1.0
for sample variance), and
and are the arithmetic means of x
and y
.
Vectors x
and y
must be the same size.
Impure wrapper function for f_sts_cov_core
.
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
real(kind=wp), | intent(in) | :: | x(:) |
x vector (assumed size array) |
||
real(kind=wp), | intent(in) | :: | y(:) |
y vector (assumed size array) |
||
real(kind=wp), | intent(in), | optional | :: | ddf |
delta degrees of freedom |
covariance
Empirical Orthogonal Function (EOF) analysis is a procedure to reduce the dimensionality
of multivariate data by identifying a set of orthogonal vectors (EOFs or eigenvectores)
that represent directions of maximum variance in the dataset.
The term EOF analysis is often used interchangably with the geographically weighted
principal component analysis (PCA). The procedures are mathematically equivalent, but
procedures for EOF analysis offer some additional options that are mostly relevant for
geoscience. The procedure fsml_pca
is a wrapper for fsml_eof
that offers a simpler,
more familiar interface for non-geoscientists.
For a classic EOF analysis, the input matrix x
holds data or observations that have been
discretised in time and space. Rows (m
) and columns (n
) can therefore be interpreted
as time and space dimensions, respectively. EOF analysis allows for geographical weighting,
which translates to column-wise weighting prior to analysis in the procedure.
Weights can be set by bassing the rank-1 array wt
of dimension n
. If this optional
argument is not passed, the procedure will default to equal weights of value .
It is numerically more stable than 1.0, which is the default for many implementations of a PCA.
After the weighting is applied, the covariance or correlation matrix is computed:
where is the preprocessed (centred and optionally standardised) data matrix,
and is the number of observations (rows in x
).
The value of the optional argument opt
determines if the covariance matrix (opt = 0
) or
correlation matrix (opt = 1
) is constructed. If the argument is not passed, the procedure will
default to the use of the covariance matrix, as is the standard for a regular PCA.
A symmetric eigen-decomposition is then performed:
where contains the EOFs (eof
), and is a diagonal matrix
of eigenvalues (ew
).
The principal components or scores (PCs, pc
) are given by:
The number of valid EOF/PC modes is determined by the number of non-zero eigenvalues.
Arrays are initialised to zero and populated only where eigenvalues are strictly positive.
The explained variance (r2
) for each component is computed as a fraction:
where is the PC index, and spans all retained eigenvalues,
representing all principal components that explain variability in the data.
EOFs may optionally be scaled (eof_scaled
) for more convenient plotting:
Note: This subroutine uses eigh
from the stdlib_linalg
module to compute
eigenvalues and eigenvectors of the symmetric covariance matrix.
Empirical Orthogonal Function (EOF) analysis
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
real(kind=wp), | intent(in) | :: | x(nd,nv) |
input data |
||
integer(kind=i4), | intent(in) | :: | nd |
number of rows |
||
integer(kind=i4), | intent(in) | :: | nv |
number of columns |
||
real(kind=wp), | intent(out) | :: | pc(nd,nv) |
principal components |
||
real(kind=wp), | intent(out) | :: | eof(nv,nv) |
EOFs/eigenvectors (unweighted) |
||
real(kind=wp), | intent(out) | :: | ew(nv) |
eigenvalues |
||
integer(kind=i4), | intent(in), | optional | :: | opt |
0 = covariance, 1 = correlation |
|
real(kind=wp), | intent(in), | optional | :: | wt(nv) |
optional weights (default = 1.0/n) |
|
real(kind=wp), | intent(out), | optional | :: | r2(nv) |
explained variance (fraction) |
|
real(kind=wp), | intent(out), | optional | :: | eof_scaled(nv,nv) |
EOFs/eigenvectors scaled for plotting |
Cumulative distribution function for exponential distribution.
Impure wrapper function for f_dst_exp_cdf_core
.
Handles optional arguments and invalid values for arguments.
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
real(kind=wp), | intent(in) | :: | x |
sample position |
||
real(kind=wp), | intent(in), | optional | :: | lambda |
lambda parameter, beta(scale) = 1/lambda = mu/mean |
|
real(kind=wp), | intent(in), | optional | :: | loc |
location parameter |
|
character(len=*), | intent(in), | optional | :: | tail |
tail options |
returned probability integral
Probability density function for exponential distribution. Uses intrinsic exp function.
Impure wrapper function for f_dst_exp_pdf_core
.
Handles optional arguments and invalid values for arguments.
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
real(kind=wp), | intent(in) | :: | x |
sample position |
||
real(kind=wp), | intent(in), | optional | :: | lambda |
lambda parameter, beta(scale) = 1/lambda = mu/mean |
|
real(kind=wp), | intent(in), | optional | :: | loc |
location parameter |
Percent point function/quantile function for exponential distribution.
Procedure uses bisection method. p
should be between 0.0 and 1.0.
Impure wrapper function for f_dst_exp_ppf_core
.
Handles optional arguments and invalid values for arguments.
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
real(kind=wp), | intent(in) | :: | p |
probability between 0.0 - 1.0 |
||
real(kind=wp), | intent(in), | optional | :: | lambda |
lambda parameter, beta(scale) = 1/lambda = mu/mean |
|
real(kind=wp), | intent(in), | optional | :: | loc |
location parameter |
sample position
Cumulative density function for the F distribution.
Impure wrapper function for f_dst_f_cdf_core
.
Handles optional arguments and invalid values for arguments.
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
real(kind=wp), | intent(in) | :: | x |
sample position |
||
real(kind=wp), | intent(in) | :: | d1 |
numerator degrees of freedom |
||
real(kind=wp), | intent(in) | :: | d2 |
denominator degrees of freedom |
||
real(kind=wp), | intent(in), | optional | :: | loc |
location parameter |
|
real(kind=wp), | intent(in), | optional | :: | scale |
scale parameter |
|
character(len=*), | intent(in), | optional | :: | tail |
tail option |
output probability
Probability density function for the F distribution. where = numerator degrees of freedom, = denominator degrees of freedom and is the complete beta function. (Uses intrinsic gamma function for beta.)
The F distribution is the distribution of , where and are are random variables with chi-square distributions with and degrees of freedom, respectively.
Impure wrapper function for f_dst_f_pdf_core
.
Handles optional arguments and invalid values for arguments.
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
real(kind=wp), | intent(in) | :: | x |
sample position |
||
real(kind=wp), | intent(in) | :: | d1 |
numerator degrees of freedom |
||
real(kind=wp), | intent(in) | :: | d2 |
denominator degrees of freedom |
||
real(kind=wp), | intent(in), | optional | :: | loc |
location parameter |
|
real(kind=wp), | intent(in), | optional | :: | scale |
scale parameter |
Percent point function / quantile function for the F distribution. Uses the bisection method to numerically invert the CDF.
Impure wrapper function for f_dst_f_ppf_core
.
Handles optional arguments and invalid values for arguments.
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
real(kind=wp), | intent(in) | :: | p |
probability (0.0 < p < 1.0) |
||
real(kind=wp), | intent(in) | :: | d1 |
numerator degrees of freedom |
||
real(kind=wp), | intent(in) | :: | d2 |
denominator degrees of freedom |
||
real(kind=wp), | intent(in), | optional | :: | loc |
location parameter |
|
real(kind=wp), | intent(in), | optional | :: | scale |
scale parameter |
Cumulative distribution function for gamma distribution.
Impure wrapper function for f_dst_gamma_cdf_core
.
Handles optional arguments and invalid values for arguments.
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
real(kind=wp), | intent(in) | :: | x |
sample position |
||
real(kind=wp), | intent(in), | optional | :: | alpha |
shape parameter |
|
real(kind=wp), | intent(in), | optional | :: | beta |
scale parameter |
|
real(kind=wp), | intent(in), | optional | :: | loc |
location parameter |
|
character(len=*), | intent(in), | optional | :: | tail |
tail options |
returned probability integral
Probability density function for gamma distribution. Uses intrinsic exp function.
Impure wrapper function for f_dst_gamma_pdf_core
.
Handles optional arguments and invalid values for arguments.
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
real(kind=wp), | intent(in) | :: | x |
sample position |
||
real(kind=wp), | intent(in), | optional | :: | alpha |
shape parameter |
|
real(kind=wp), | intent(in), | optional | :: | beta |
scale parameter |
|
real(kind=wp), | intent(in), | optional | :: | loc |
location parameter |
Percent point function/quantile function for gamma distribution.
Procedure uses bisection method. p
should be between 0.0 and 1.0.
Impure wrapper function for f_dst_gamma_ppf_core
.
Handles optional arguments and invalid values for arguments.
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
real(kind=wp), | intent(in) | :: | p |
probability between 0.0 - 1.0 |
||
real(kind=wp), | intent(in), | optional | :: | alpha |
shape parameter |
|
real(kind=wp), | intent(in), | optional | :: | beta |
scale parameter |
|
real(kind=wp), | intent(in), | optional | :: | loc |
location parameter |
sample position
Cumulative distribution function for generalised pareto distribution.
Impure wrapper function for f_dst_gpd_cdf_core
.
Handles optional arguments and invalid values for arguments.
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
real(kind=wp), | intent(in) | :: | x |
sample position |
||
real(kind=wp), | intent(in) | :: | xi |
distribution shape parameter |
||
real(kind=wp), | intent(in), | optional | :: | mu |
distribution location |
|
real(kind=wp), | intent(in), | optional | :: | sigma |
distribution dispersion/scale (must be positive) |
|
character(len=*), | intent(in), | optional | :: | tail |
tail options |
returned probability integral
Probability density function for generalised pareto distribution. where is a shape parameter (xi), is the scale parameter (sigma), (mu) is the location (not mean).
Impure wrapper function for f_dst_gpd_pdf_core
.
Handles optional arguments and invalid values for arguments.
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
real(kind=wp), | intent(in) | :: | x |
sample position |
||
real(kind=wp), | intent(in) | :: | xi |
distribution shape parameter |
||
real(kind=wp), | intent(in), | optional | :: | mu |
distribution location |
|
real(kind=wp), | intent(in), | optional | :: | sigma |
distribution dispersion/scale (must be positive) |
Percent point function/quantile function for generalised pareto distribution.
Procedure uses bisection method. p
must be between 0.0 and 1.0.
Impure wrapper function for f_dst_gpd_ppf_core
.
Handles optional arguments and invalid values for arguments.
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
real(kind=wp), | intent(in) | :: | p |
probability between 0.0 - 1.0 |
||
real(kind=wp), | intent(in), | optional | :: | xi |
distribution shape parameter |
|
real(kind=wp), | intent(in), | optional | :: | mu |
distribution location |
|
real(kind=wp), | intent(in), | optional | :: | sigma |
distribution dispersion/scale (must be positive) |
sample position
The procedure is an implementation of the agglomerative hierarchical clustering method that groups data points into clusters by iteratively merging the most similar clusters. The procedure uses centroid linkage and the Mahalanobis distance as a measure of similarity.
The input matrix (x
) holds observations in rows (nd
) and variables in columns (nv
).
The target number of clusters (nc
) must be at least 1 and not greater than the number
of data points.
The variables are standardised before computing the covariance matrix on the transformed data. The matrix is used for calculating the Mahalanobis distance.
Clusters are merged iteratively until the target number of clusters is reached.
The global mean (gm
), cluster centroids (cm
), membership assignments (cl
),
and cluster sizes (cc
), the covariance matrix (cov
) and standard deviations
(sigma
) used in the distance calculations are returned.
Impure wrapper procedure for s_nlp_hclust_core
.
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
real(kind=wp), | intent(in) | :: | x(nd,nv) |
input data matrix (samples, variables) |
||
integer(kind=i4), | intent(in) | :: | nd |
number of data points |
||
integer(kind=i4), | intent(in) | :: | nv |
number of variables |
||
integer(kind=i4), | intent(in) | :: | nc |
number of clusters (target) |
||
real(kind=wp), | intent(out) | :: | gm(nv) |
global means for each variable |
||
real(kind=wp), | intent(out) | :: | cm(nv,nc) |
cluster centroids |
||
integer(kind=i4), | intent(out) | :: | cl(nd) |
cluster assignments for each data point |
||
integer(kind=i4), | intent(out) | :: | cc(nc) |
cluster sizes |
||
real(kind=wp), | intent(out) | :: | cov(nv,nv) |
covariance matrix |
||
real(kind=wp), | intent(out) | :: | sigma(nv) |
standard deviation per variable |
The procedure implements a hybrid clustering approach combining agglomerative hierarchical
clustering and k-means clustering, both using the Mahalanobis distance as the similarity measure.
The hierarchical step first partitions the data into nc
clusters by iteratively merging the most
similar clusters. The resulting centroids from are then used as initial centroids (cm_in
)
for the k-means procedure, which refines them iteratively.
The input matrix (x
) holds observations in rows (nd
) and variables in columns (nv
).
The number of clusters (nc
) must be at least 1 and not greater than the number of data points.
In the hierarchical clustering step, variables are standardised before computing the covariance matrix
on the transformed data. The covariance matrix is passed to the k-means clustering procedure along
with the initial cluster centroids. The k-means clustering step then assigns each observation to the
nearest centroid, recomputes centroids from cluster memberships, and iterates until convergence or
the iteration limit is reached. Final centroids are sorted by the first variable, and assignments
are updated accordingly.
The global mean (gm
), final cluster centroids (cm
), membership assignments (cl
), and cluster
sizes (cc
), the covariance matrix (cov
) and standard deviations (sigma
) used in the distance
calculations are returned.
Note: This procedure uses the pure procedure for calculating the Mahalanobis distance
f_lin_mahalanobis_core
, which useschol
from the stdlib_linalg
module.
Impure wrapper procedure for s_nlp_hkmeans_core
.
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
real(kind=wp), | intent(in) | :: | x(nd,nv) |
input data matrix (samples, variables) |
||
integer(kind=i4), | intent(in) | :: | nd |
number of data points |
||
integer(kind=i4), | intent(in) | :: | nv |
number of variables |
||
integer(kind=i4), | intent(in) | :: | nc |
number of clusters (target) |
||
real(kind=wp), | intent(out) | :: | gm(nv) |
global means for each variable |
||
real(kind=wp), | intent(out) | :: | cm(nv,nc) |
cluster centroids |
||
integer(kind=i4), | intent(out) | :: | cl(nd) |
cluster assignments for each data point |
||
integer(kind=i4), | intent(out) | :: | cc(nc) |
cluster sizes |
||
real(kind=wp), | intent(out) | :: | cov(nv,nv) |
covariance matrix |
||
real(kind=wp), | intent(out) | :: | sigma(nv) |
standard deviation per variable |
The procedure implements the K-means clustering algorithm using the Mahalanobis
distance as the similarity measure. It accepts initial centroids (cm_in
), refines
them iteratively, and returns the final centroids (cm
).
The input matrix (x
) holds observations in rows (nd
) and variables in columns (nv
).
The number of clusters (nc
) must be at least 1 and not greater than the number of
data points. The procedure assigns each observation to the nearest centroid using the
Mahalanobis distance, recomputes centroids from cluster memberships, and iterates until
convergence or the iteration limit is reached. Final centroids are sorted by the first
variable, and assignments are updated accordingly.
If the covariance matrix (cov_in
) is passed, it will be used to calculate the
Mahalanobis distance. If it is not passed, the variables are standardised before
computing the covariance matrix on the transformed data.
The global mean (gm
), cluster centroids (cm
), membership assignments (cl
),
and cluster sizes (cc
), the covariance matrix (cov
- either cov_in
or internally
calculated) and standard deviations (sigma
) used in the distance calculations are returned.
Impure wrapper procedure for s_nlp_kmeans_core
.
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
real(kind=wp), | intent(in) | :: | x(nd,nv) |
raw data (samples, variables) |
||
integer(kind=i4), | intent(in) | :: | nd |
number of data points |
||
integer(kind=i4), | intent(in) | :: | nv |
number of variables |
||
integer(kind=i4), | intent(in) | :: | nc |
number of clusters |
||
real(kind=wp), | intent(in) | :: | cm_in(nv,nc) |
initial centroids (raw, not standardised) |
||
real(kind=wp), | intent(out) | :: | gm(nv) |
global means |
||
real(kind=wp), | intent(out) | :: | cm(nv,nc) |
centroids (refined, standardised) |
||
integer(kind=i4), | intent(out) | :: | cl(nd) |
cluster assignments |
||
integer(kind=i4), | intent(out) | :: | cc(nc) |
cluster sizes |
||
real(kind=wp), | intent(out) | :: | cov(nv,nv) |
covariance matrix |
||
real(kind=wp), | intent(out) | :: | sigma(nv) |
standard deviations per variable |
||
real(kind=wp), | intent(in), | optional | :: | cov_in(nv,nv) |
optional covariance matrix |
The Kruskal-Wallis H-test is used to determine whether samples originate from the same distribution without assuming normality. It is therefore considered a nonparametric alternative to the one-way ANOVA (Analysis of Variance).
The null hypothesis and alternative hypothesis are defined as: : The populations have the same distribution (medians are equal), and : At least one population differs from the others.
The data is passed to the procedure as a rank-2 array x
, where each column is a group of observations.
All values are ranked across the entire dataset, with tied values assigned the average rank.
The Kruskal-Wallis H-statistic (h
) is computed as:
where:
- is the total number of observations,
- is the number of groups,
- is the number of observations in group , and
- is the sum of ranks in group .
The degrees of freedom are:
and returned as df
.
The p-value (p
) is computed from the chi-squared distribution:
It is computed using the elemental procedure f_dst_chi2_cdf_core
.
The Kruskal-Wallis test assumes that: a) all groups are independent, b) the response variable is ordinal or continuous, c) the group distributions have the same shape, and d) observations are independent both within and between groups.
Impure wrapper procedure for s_tst_kruskalwallis_core
.
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
real(kind=wp), | intent(in) | :: | x(:,:) |
2D array, each column is a group |
||
real(kind=wp), | intent(out) | :: | h |
Kruskal-Wallis H-statistic |
||
real(kind=wp), | intent(out) | :: | df |
degrees of freedom (k - 1) |
||
real(kind=wp), | intent(out) | :: | p |
p-value from chi-squared distribution |
interface fsml_lda_2class The 2-class multivariate Linear Discriminant Analysis (LDA) is a statistical procedure for classification and the investigation and explanation of differences between two groups (or classes) with regard to their attribute variables. It quantifies the discriminability of the groups and the contribution of each of the attribute variables to this discriminability.
The procedure finds a discriminant function that best separates the two groups. The function can be expressed as a linear combination of the attribute variables:
where is the discriminant function, are the attribute
variables used in evaluating the differences between the groups,
are the discriminant coefficients associated with each variable, (nv
) is
the number of variables, and is the y-intercept.
(Note: Mathematically, it is analogous to a multivariate linear regression function.)
Each attribute variable contains elements (x
), where
(nd
) is the number of elements in each group. Each element is associated with a
discriminant value described by:
Geometrically, this can be visualised as elements being projected on the
discriminant axis . The optimal discriminant function is then determined by
finding an axis, on which the projected elements for the two groups are best separated.
The best separation is given by maximising the discriminant criterion (g
),
a signal to noise ratio, so that:
where and are the number of elements in groups and ,
respectively. The procedure assumes that these are the same (nd
) and only accepts 2 groups (nc = 2
).
The discriminant coefficients are then standardised (sa
) using the standard deviations
of respective variables. The discriminant function represents a model that best seperates
the groups and can be used as a classification model. The skill of that model is determined
by forgetting the association of each element with the groups and using the model to reclassify
the elements. The score (score
) is the fraction of correct classifications and can be
interpreted as a measure of how well the function works as a classification model.
The procedure optionally returns the Mahalanobis distance (mh
) as a measure of distance
between the groups.
Note: This subroutine uses eigh
from the stdlib_linalg
module.
2-class multivariate Linear Discriminant Analysis (LDA)
Performs classification and returns: - Standardised discriminant coefficients - Reclassification accuracy - Mahalanobis distance - Discriminant criterion
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
real(kind=wp), | intent(in) | :: | x(nd,nv,nc) |
input data (nd samples × nv variables × nc classes) |
||
integer(kind=i4), | intent(in) | :: | nd |
number of datapoints per class |
||
integer(kind=i4), | intent(in) | :: | nv |
number of variables |
||
integer(kind=i4), | intent(in) | :: | nc |
number of classes (must be 2) |
||
real(kind=wp), | intent(out) | :: | sa(nv) |
standardised discriminant coefficients |
||
real(kind=wp), | intent(out) | :: | g |
discriminant criterion |
||
real(kind=wp), | intent(out) | :: | score |
classification score |
||
real(kind=wp), | intent(out), | optional | :: | mh |
Mahalanobis distance |
Computes the Mahalanobis distance between two input feature vectors x
and y
.
If a covariance matrix cov
is provided, it is used directly in the calculation.
Otherwise, the procedure estimates the covariance matrix from the two-sample dataset
formed by x
and y
. A Cholesky-based solver is used to perform the distance
calculation.
The Mahalanobis distance is defined as:
where is the covariance matrix. The inverse is applied via the Cholesky decomposition for numerical stability.
Note: If passed, the covariance matrix (cov
) must be positive definite
for the factorisation to succeed.
Impure wrapper function for f_lin_mahalanobis_core
.
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
real(kind=wp), | intent(in) | :: | x(:) |
input vector 1 |
||
real(kind=wp), | intent(in) | :: | y(:) |
input vector 2 |
||
real(kind=wp), | intent(in), | optional | :: | cov(:,:) |
covariance matrix |
Mahalanobis distance
Computes arithmetic mean.
where is the size of (or number of observations in) vector x
,
are individual elements in x
, and
is the arithmetic mean of x
.
Impure wrapper function for f_sts_mean_core
.
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
real(kind=wp), | intent(in) | :: | x(:) |
x vector (assumed size array) |
arithmetic mean
Computes median of vector x
. The procedures can handle tied ranks.
Impure wrapper function for f_sts_median_core
.
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
real(kind=wp), | intent(in) | :: | x(:) |
x vector (assumed size array) |
median
Cumulative distribution function for normal distribution.
The location parameter (mu
) is an optional argument and will default to 0.0 if not passed.
The scale parameter (sigma
) is an optional argument. If passed, it must be non-zero positive.
It will default to 1.0 if not passed.
The tail option (tail
) is an optional argument. If passed, it must be one of the following:
"left", "right", "two", or "confidence". If not passed, it will default to "left".
Impure wrapper function for f_dst_norm_cdf_core
.
Handles optional arguments and invalid values for arguments.
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
real(kind=wp), | intent(in) | :: | x |
sample position |
||
real(kind=wp), | intent(in), | optional | :: | mu |
distribution location (mean) |
|
real(kind=wp), | intent(in), | optional | :: | sigma |
distribution dispersion/scale (standard deviation) |
|
character(len=*), | intent(in), | optional | :: | tail |
tail options |
returned probability integral
Probability density function for normal distribution.
The location parameter (mu
) is an optional argument and will default to 0.0 if not passed.
The scale parameter (sigma
) is an optional argument. If passed, it must be non-zero positive.
It will default to 1.0 if not passed.
Impure wrapper function for f_dst_norm_pdf_core
.
Handles optional arguments and invalid values for arguments.
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
real(kind=wp), | intent(in) | :: | x |
sample position |
||
real(kind=wp), | intent(in), | optional | :: | mu |
distribution location (mean) |
|
real(kind=wp), | intent(in), | optional | :: | sigma |
distribution dispersion/scale (standard deviation) |
Percent point function/quantile function for normal distribution.
The probability (p
)must be between 0.0 and 1.0.
The location parameter (mu
) is an optional argument and will default to 0.0 if not passed.
The scale parameter (sigma
) is an optional argument. If passed, it must be non-zero positive.
It will default to 1.0 if not passed.
The procedure uses bisection method. Conditions p=0.0 and p=1.0 cannot return negative and positive infinity; will return large negative or positive numbers (highly dependent on the tolerance threshold).
Impure wrapper function for f_dst_norm_ppf_core
.
Handles optional arguments and invalid values for arguments.
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
real(kind=wp), | intent(in) | :: | p |
probability between 0.0 - 1.0 |
||
real(kind=wp), | intent(in), | optional | :: | mu |
distribution location (mean) |
|
real(kind=wp), | intent(in), | optional | :: | sigma |
distribution dispersion/scale (standard deviation) |
sample position
The multiple linear Ordinary Least Squares (OLS) regression models the relationship or linear dependence between a dependent (predictand) variable and and one or more independent (predictor) variables. The procedure estimates the linear regression coefficients by minimising the sum of squared residuals.
The estimated regression model is of the form:
where is the predictand variable, are the predictor variables (x
)
with nd
observations, is the y-intercept (b0
), (b
)
are the regression coefficients, and (nv
) is the number of predictors (excluding the intercept).
The subroutine constructs a full matrix internally by prepending a column of ones to account for the intercept. The regression coefficients are estimated as:
where is the extended design matrix including the intercept term.
The coefficient of determination (r2
) which represents the proportion of the total
variance of (y
) explained by the predictors. The predicted values (y_hat
),
standard errors (se
) of the coefficients, and the covariance matrix of the predictors (cov_b
)
can optionally be returned by the procedure, too.
Note: This subroutine uses eigh
from the stdlib_linalg
module.
Note: The intercept and predictor coefficients are computed separately and returned explicitly.
Multiple Linear Ordinary Least Squares (OLS) Regression with intercept. NOTE: OLS could be wrapper for ridge (with lambda = 0 or presence checks if mande an optional argument). However, it would increase computation slightly and make code less readable. OLS is often used in teaching and therefore, an easily readable standalone is kept.
Computes: - Intercept b0 (scalar) - Predictor coefficients b(nv) - Coefficient of determination R² - Standard errors se(nv) - Covariance matrix of predictors covb(nv,nv)
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
real(kind=wp), | intent(in) | :: | x(nd,nv) |
predictor data matrix (no intercept column) |
||
real(kind=wp), | intent(in) | :: | y(nd) |
response vector |
||
integer(kind=i4), | intent(in) | :: | nd |
number of datapoints |
||
integer(kind=i4), | intent(in) | :: | nv |
number of predictors (excluding intercept) |
||
real(kind=wp), | intent(out) | :: | b0 |
intercept coefficient |
||
real(kind=wp), | intent(out) | :: | b(nv) |
predictor coefficients |
||
real(kind=wp), | intent(out) | :: | r2 |
coefficient of determination R² |
||
real(kind=wp), | intent(out), | optional | :: | y_hat(nd) |
predicted y values |
|
real(kind=wp), | intent(out), | optional | :: | se(nv) |
standard errors of predictor coefficients |
|
real(kind=wp), | intent(out), | optional | :: | cov_b(nv,nv) |
covariance matrix of predictor coefficients |
Principal Component Analysis (PCA) is a procedure to reduce the dimensionality of multivariate data by identifying a set of orthogonal vectors (eigenvectores) that represent directions of maximum variance in the dataset.
The procedure fsml_pca
is a wrapper for fsml_eof
and offers a simpler,
more familiar interface for non-geoscientists. The EOF interface allows for
more options to be passed that are irrelevant to standard applications of PCA.
The PCA procedure calls the EOF procedures with weights (wt
) set to 1.0,
and matrix options set to opt = 0
to force the use of the covariance matrix
to be comparable to other common implementations of a PCA (e.g., sklearn).
The covariance matrix is computed as:
where is the preprocessed (centred and optionally standardised) data matrix,
and is the number of observations (rows in x
).
A symmetric eigen-decomposition is then performed:
where contains the EOFs (ev
), and is a diagonal matrix
of eigenvalues (ew
).
The principal components or scores (PCs, pc
) are given by:
The number of valid PC modes is determined by the number of non-zero eigenvalues.
Arrays are initialised to zero and populated only where eigenvalues are strictly positive.
The explained variance (r2
) for each component is computed as a fraction:
where is the PC index, and spans all retained eigenvalues,
representing all principal components that explain variability in the data.
Note: This subroutine uses eigh
from the stdlib_linalg
module to compute
eigenvalues and eigenvectors of the symmetric covariance matrix.
Principal Component Analysis (PCA).
It is a special (simplified) case of EOF analysis offered as a separate
procedure for clarity/familiarity. It calls s_lin_eof
with equal weights.
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
real(kind=wp), | intent(in) | :: | x(nd,nv) |
input data |
||
integer(kind=i4), | intent(in) | :: | nd |
number of rows |
||
integer(kind=i4), | intent(in) | :: | nv |
number of columns |
||
real(kind=wp), | intent(out) | :: | pc(nd,nv) |
principal components |
||
real(kind=wp), | intent(out) | :: | ev(nv,nv) |
eigenvectors (unweighted) |
||
real(kind=wp), | intent(out) | :: | ew(nv) |
eigenvalues |
||
real(kind=wp), | intent(out), | optional | :: | r2(nv) |
explained variance (fraction) |
Computes Pearson correlation coefficient (PCC).
where is the Pearson correlation coefficient for vectors x
and y
,
is the covariance of x
and y
, and
and are the standard deviations of x
and y
.
Vectors x
and y
must be the same size.
Impure wrapper function for f_sts_trend_core
.
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
real(kind=wp), | intent(in) | :: | x(:) |
x vector (assumed size array) |
||
real(kind=wp), | intent(in) | :: | y(:) |
y vector (assumed size array) |
Pearson correlation coefficient
Ranks all samples such that the smallest value obtains rank 1 and the largest rank n. Handles tied ranks and assigns average rank to tied elements within one group of tied elements.
Ranks all samples such that the smallest value obtains rank 1 and the largest rank n. Handles tied ranks and assigns average rank to tied elements within one group of tied elements.
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
real(kind=wp), | intent(in) | :: | x(:) |
x array |
||
real(kind=wp), | intent(out), | allocatable | :: | ranks(:) |
ranks of x |
The ranks sum test (Wilcoxon rank-sum test or Mann–Whitney U test) is a non-parametric test to determine if two independent samples and are have the same distribution. It can be regarded as the non-parametric equivalent of the 2-sample t-test.
The null hypothesis and alternative hypothesis can be written as: : the distributions of and are equal. : the distributions of and are not equal.
The Mann–Whitney U statistic is calculated for each sample as follows: where is the sum of ranks of sample set and is the sample size of sample set . The final U statistic is:
The procedure takes into consideration tied ranks.
Impure wrapper procedure for s_tst_ranksum_core
.
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
real(kind=wp), | intent(in) | :: | x1(:) |
x1 vector (samples) |
||
real(kind=wp), | intent(in) | :: | x2(:) |
x2 vector (samples) |
||
real(kind=wp), | intent(out) | :: | u |
U statistic |
||
real(kind=wp), | intent(out) | :: | p |
p-value |
||
character(len=*), | intent(in), | optional | :: | h1 |
option: "two" (default), "lt", or "gt" |
Read CSV file directly into dataframe.
Read CSV file directly into dataframe.
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
character(len=*), | intent(in) | :: | infile |
read csv file |
||
type(fsml_typ_df), | intent(inout) | :: | df |
dataframe |
||
logical, | intent(in), | optional | :: | labelcol |
true if first column contains row labels |
|
logical, | intent(in), | optional | :: | labelrow |
true if first row contains column lavels |
|
character(len=1), | intent(in), | optional | :: | delimiter |
single char delimiter |
The multiple linear Ridge regression models the relationship or linear dependence between a dependent (predictand) variable and one or more independent (predictor) variables, incorporating a penalty term on the size of the regression coefficients to reduce multicollinearity and overfitting.
The procedure estimates the linear regression coefficients by minimising the sum of squared residuals plus a penalty proportional to the square of the magnitude of coefficients:
where (lambda
) is the ridge penalty parameter, and is the
identity matrix with the first diagonal element corresponding to the intercept set to zero
(no penalty on intercept).
The estimated regression model is of the form:
where is the predictand variable, are the predictor variables (x
)
with nd
observations, is the y-intercept (b0
), (b
)
are the ridge regression coefficients, and (nv
) is the number of predictors
(excluding the intercept).
The subroutine constructs a full matrix internally by prepending a column of ones to account for
the intercept. The coefficient of determination (r2
), predicted values (y_hat
),
ridge-adjusted standard errors (se
) of the coefficients, and the ridge-adjusted covariance
matrix of the predictors (cov_b
) can optionally be returned. The covariance matrix and standard
errors are adjusted for the ridge penalty as:
where is the residual variance estimate.
Note: This subroutine uses eigh
from the stdlib_linalg
module.
Multiple Linear Ridge Regression (λ >= 0) with intercept.
Computes: - Intercept b0 (scalar) - Predictor coefficients b(nv) - Coefficient of determination R² - Standard errors se(nv) (ridge-adjusted) - Covariance matrix of predictors covb(nv,nv) (ridge-adjusted)
Notes: - When lambda (λ) = 0, this reduces to ordinary least squares (OLS). - Ridge modifies the variance-covariance formula: cov(β) = σ² (XᵀX + λI)⁻¹ XᵀX (XᵀX + λI)⁻¹ This shrinks coefficients and affects SEs.
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
real(kind=wp), | intent(in) | :: | x(nd,nv) |
predictor data matrix (no intercept column) |
||
real(kind=wp), | intent(in) | :: | y(nd) |
response vector |
||
integer(kind=i4), | intent(in) | :: | nd |
number of datapoints |
||
integer(kind=i4), | intent(in) | :: | nv |
number of predictors (excluding intercept) |
||
real(kind=wp), | intent(in) | :: | lambda |
ridge penalty parameter (≥ 0, non-optional) |
||
real(kind=wp), | intent(out) | :: | b0 |
intercept coefficient |
||
real(kind=wp), | intent(out) | :: | b(nv) |
predictor coefficients |
||
real(kind=wp), | intent(out) | :: | r2 |
coefficient of determination R² |
||
real(kind=wp), | intent(out), | optional | :: | y_hat(nd) |
predicted y values |
|
real(kind=wp), | intent(out), | optional | :: | se(nv) |
standard errors of predictor coefficients |
|
real(kind=wp), | intent(out), | optional | :: | cov_b(nv,nv) |
covariance matrix of predictor coefficients |
Computes the Spearman rank correlation coefficient (SCC).
The procedure gets the ranks of cectors x
and y
, then
calculates the Pearson correlation coefficient on these ranks.
Vectors x
and y
must be the same size.
Impure wrapper for f_sts_scc_core
.
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
real(kind=wp), | intent(in) | :: | x(:) |
x vector (assumed size array) |
||
real(kind=wp), | intent(in) | :: | y(:) |
y vector (assumed size array) |
Spearman correlation coefficient
The 1-sample Wilcoxon signed rank test is a non-parametric test that determines if data comes from a symmetric population with centre . It can be regarded as a non-parametric version of the 1-sample t-test.
If the data consists of independent and similarly distributed samples from distribution , the null hypothesis can be expressed as:
is symmetric around .
The default alternative hypothesis is two-sided and also be
set explicitly (h1 = "two"
). It can be expressed as:
is symmetric around
If the alternative hypothesis is set to "greater than" (h1 = "gt"
), it is:
is symmetric around
If the alternative hypothesis is set to "less than" (h1 = "lt"
), it is:
is symmetric around
The test statistic is the smaller of the sum of positive and negative signed ranks:
The procedure takes into consideration tied ranks.
Impure wrapper procedure for s_tst_signedrank_1s_core
.
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
real(kind=wp), | intent(in) | :: | x(:) |
x vector (samples) |
||
real(kind=wp), | intent(in) | :: | mu0 |
population mean (null hypothesis expected value) |
||
real(kind=wp), | intent(out) | :: | w |
W statistic (sum of signed ranks) |
||
real(kind=wp), | intent(out) | :: | p |
p-value |
||
character(len=*), | intent(in), | optional | :: | h1 |
: "two" (default), "lt", "gt" |
The Wilcoxon signed rank test is a non-parametric test that determines if two related paired samples come from the same distribution. It can be regarded as a non-parametric version of the paired t-test.
The Wilcoxon signed rank test is mathematically equivalent to the 1-sample Wilcoxon signed rank test conducted on the difference vector with set to zero. Consequently, the the null hypothesis can be expressed as:
Samples are symmetric around .
The default alternative hypothesis is two-sided and also be
set explicitly (h1 = "two"
). It can be expressed as:
Samples are symmetric around
If the alternative hypothesis is set to "greater than" (h1 = "gt"
), it is:
Samples are symmetric around
If the alternative hypothesis is set to "less than" (h1 = "lt"
), it is:
Samples are symmetric around
The procedure takes into consideration tied ranks.
Impure wrapper procedure for s_tst_signedrank_2s_core
.
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
real(kind=wp), | intent(in) | :: | x1(:) |
sample 1 (paired data) |
||
real(kind=wp), | intent(in) | :: | x2(:) |
sample 2 (paired data) |
||
real(kind=wp), | intent(out) | :: | w |
W statistic (sum of signed ranks) |
||
real(kind=wp), | intent(out) | :: | p |
p-value |
||
character(len=*), | intent(in), | optional | :: | h1 |
: "two" (default), "lt", "gt" |
Computes the population or sample standard deviation (depending on passed arguments).
where is the variance of vector x
.
(ddof
) can also be passed and serves as a degrees of freedom adjustment
when the variance is caulculated. (ddof = 0.0
for population standard deviation,
ddof = 1.0
for sample standard deviation)
Impure wrapper function for f_sts_std_core
.
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
real(kind=wp), | intent(in) | :: | x(:) |
x vector (assumed size array) |
||
real(kind=wp), | intent(in), | optional | :: | ddf |
delta degrees of freedom |
standard deviation
Cumulative distribution function for student t distribution.
The value for degrees of freedom (df
) must be 1.0 or higher.
The location parameter (mu
) is an optional argument and will default to 0.0 if not passed.
The scale parameter (sigma
) is an optional argument. If passed, it must be non-zero positive.
It will default to 1.0 if not passed.
The tail option (tail
) is an optional argument. If passed, it must be one of the following:
"left", "right", "two", or "confidence". If not passed, it will default to "left".
Impure wrapper function for f_dst_t_cdf_core
.
Handles optional arguments and invalid values for arguments.
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
real(kind=wp), | intent(in) | :: | x |
sample position |
||
real(kind=wp), | intent(in) | :: | df |
degrees of freedom |
||
real(kind=wp), | intent(in), | optional | :: | mu |
distribution location (mean) |
|
real(kind=wp), | intent(in), | optional | :: | sigma |
distribution dispersion/scale (standard deviation) |
|
character(len=*), | intent(in), | optional | :: | tail |
tail options |
returned probability integral
Probability density function for student t distribution.
Uses intrinsic gamma function (Fortran 2008 and later).
where = degrees of freedom (df
) and is the gamma function.
The value for degrees of freedom (df
) must be 1.0 or higher.
The location parameter (mu
) is an optional argument and will default to 0.0 if not passed.
The scale parameter (sigma
) is an optional argument. If passed, it must be non-zero positive.
It will default to 1.0 if not passed.
Impure wrapper function for f_dst_t_pdf_core
.
Handles optional arguments and invalid values for arguments.
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
real(kind=wp), | intent(in) | :: | x |
sample position |
||
real(kind=wp), | intent(in) | :: | df |
degrees of freedom |
||
real(kind=wp), | intent(in), | optional | :: | mu |
distribution location (~mean) |
|
real(kind=wp), | intent(in), | optional | :: | sigma |
distribution dispersion/scale (~standard deviation) |
Percent point function/quantile function for t distribution.
Procedure uses bisection method. Conditions p=0.0 and p=1.0 cannot return negative and positive infinity; will return large negative or positive numbers (highly dependent on the tolerance threshold).
The value for degrees of freedom (df
) must be 1.0 or higher.
The location parameter (mu
) is an optional argument and will default to 0.0 if not passed.
The scale parameter (sigma
) is an optional argument. If passed, it must be non-zero positive.
It will default to 1.0 if not passed.
Impure wrapper function for f_dst_t_ppf_core
.
Handles optional arguments and invalid values for arguments.
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
real(kind=wp), | intent(in) | :: | p |
probability between 0.0 - 1.0 |
||
real(kind=wp), | intent(in) | :: | df |
degrees of freedom |
||
real(kind=wp), | intent(in), | optional | :: | mu |
distribution location (mean) |
|
real(kind=wp), | intent(in), | optional | :: | sigma |
distribution dispersion/scale (standard deviation) |
sample position
Computes regression coefficient/trend.
where is the slope of the regression line (linear trend),
is the covariance of x
and y
, and
is the variance of x
.
Vectors x
and y
must be the same size.
Impure wrapper function for f_sts_trend_core
.
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
real(kind=wp), | intent(in) | :: | x(:) |
x vector (assumed size array) |
||
real(kind=wp), | intent(in) | :: | y(:) |
y vector (assumed size array) |
trend/regression slope
The 1-sample t-test determines if the sample mean has the value specified in the null hypothesis.
The null hypothesis and alternative hypothesis can be written as: : , and :
The test statstic is calculated as follows: where is the sample mean, is the sample standard deviation, is the sample size, and is the population mean.
The degrees of freedom is calculated as follows:
Impure wrapper procedure for s_tst_ttest_1s_core
.
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
real(kind=wp), | intent(in) | :: | x(:) |
x vector (samples) |
||
real(kind=wp), | intent(in) | :: | mu0 |
population mean (null hypothesis expected value) |
||
real(kind=wp), | intent(out) | :: | t |
test statistic |
||
real(kind=wp), | intent(out) | :: | df |
degrees of freedom |
||
real(kind=wp), | intent(out) | :: | p |
p-value |
||
character(len=*), | intent(in), | optional | :: | h1 |
option: two (default), le, ge |
The 2-sample t-test determines if two population means and are the same. The procedure can handle 2-sample t-tests for equal variances and Welch's t-tests for unequal variances.
The null hypothesis and alternative hypothesis can be written as: : , and :
The procedure defaults to Welch's t-test for unequal variances if eq_var
is not specified.
In this case, the test statstic is calculated as follows:
where and are the sample means
and are the sample standard deviations, and
and are the sample sizes.
The degrees of freedom is approximated with the Welch–Satterthwaite equation:
If variances are assumed to be equal (eq_var = .true.
),
the procedure conducts a 2 sample t-test for equal variances, using the pooled standard
deviation to calculate the t-statistic:
In case of assumed equal variances, the degrees of freedom is calculated as follows:
Impure wrapper procedure for s_tst_ttest_2s_core
.
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
real(kind=wp), | intent(in) | :: | x1(:) |
x1 vector (samples) |
||
real(kind=wp), | intent(in) | :: | x2(:) |
x2 vector (samples) |
||
real(kind=wp), | intent(out) | :: | t |
test statistic |
||
real(kind=wp), | intent(out) | :: | df |
degrees of freedom |
||
real(kind=wp), | intent(out) | :: | p |
p-value |
||
logical, | intent(in), | optional | :: | eq_var |
true if equal variances assumed |
|
character(len=*), | intent(in), | optional | :: | h1 |
option: two (default), le, ge |
The paired sample t-test (or dependent sample t-test) determines if the mean difference between two sample sets are zero. It is mathematically equivalent to the 1-sample t-test conducted on the difference vector with .
The null hypothesis and alternative hypothesis can be written as: : , and :
The test statstic is calculated as follows: where is the mean of the differences between the sample sets, is the standard deviation of the differences, and is the number of paired samples.
The degrees of freedom is calculated as follows:
Impure wrapper procedure for s_tst_ttest_paired_core
.
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
real(kind=wp), | intent(in) | :: | x1(:) |
x1 vector (samples) |
||
real(kind=wp), | intent(in) | :: | x2(:) |
x2 vector (samples); must be same length as x1 |
||
real(kind=wp), | intent(out) | :: | t |
test statistic |
||
real(kind=wp), | intent(out) | :: | df |
degrees of freedom |
||
real(kind=wp), | intent(out) | :: | p |
p-value |
||
character(len=*), | intent(in), | optional | :: | h1 |
option: two (default), le, ge |
Computes the population or sample variance (depending on passed arguments).
where is the size of (or number of observations in) vector x
,
are individual elements in x
,
(ddof
) is a degrees of freedom adjustment
(ddof = 0.0
for population variance, ddof = 1.0
for sample variance), and
is the arithmetic mean of x
.
Impure wrapper function for f_sts_var_core
.
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
real(kind=wp), | intent(in) | :: | x(:) |
x vector (assumed size array) |
||
real(kind=wp), | intent(in), | optional | :: | ddf |
delta degrees of freedom |
variance